簡易檢索 / 詳目顯示

研究生: 龔錦川
Ching-chuan Kung
論文名稱: 無鉛銲料於不同基材鍍層處理濕潤性與機械性質之研究
Study on Wettability and Mechanical Properties between Lead-Free Solders and Different Finished Substrates
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 蔡顯榮
none
陳志銘
none
吳子嘉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 117
中文關鍵詞: 無鉛銲料濕潤性機械性質
外文關鍵詞: Lead-Free solder, wettability, Mechanical Properties
相關次數: 點閱:245下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以C5191 (Cu-4.0wt%Sn-0.2wt%P)、C7521 (Cu-18.0wt% Ni)、C2680 (Cu-18.0wt%Zn)之基材金屬,分別經過Sn-10%wtPb/Ni-P、Sn/Ni-P及Au/Ni-P等不同鍍層處理後,再操作濕潤天平,以熔融之Sn-0.7wt%Cu (SC)、Sn-3.0wt%Ag-0.5wt%Cu (SAC)、Sn-58wt% Bi (SB)銲料分別量測濕潤性。另同樣以Sn-37wt%Pb (SP)銲料做測試對照,並進一步解析與銲點之剪切強度之對應比較。
    實驗結果顯示在260 ℃下,C5191之鍍層試片的濕潤時間在0.19-1.56秒之間,濕潤力則在0.15-0.83 mN之間。C7521之鍍層試片的濕潤時間在0.16-1.30秒之間,濕潤力則在0.24-0.84 mN之間。C2680之鍍層試片的濕潤時間則在0.14-1.41秒之間,濕潤力則在0.27-0.83 mN之間。其中SB銲料對三種基材金屬之Au/Ni-P鍍層試片上之濕潤性皆呈不濕潤(non-wetting)狀態。另在SP銲料中,C5191之鍍層試片之濕潤時間是在0.18-0.68秒之間,濕潤力則在0.38-0.78 mN之間。C7521之鍍層試片之濕潤時間是在0.22-0.69秒之間,濕潤力則在0.46- 0.81 mN之間。C2680之鍍層試片之濕潤時間是在0.20-0.63秒之間,濕潤力則在0.45-0.76 mN之間。
    在濕潤時間為指標,三種基材鍍層試片較佳的濕潤性均發生在Sn-Pb/Ni-P鍍層試片上,依次為Sn/Ni-P與Au/Ni-P鍍層試片。在銲料對濕潤時間之表現,皆以在SP銲料中之表現最佳,依次為在SAC、SC及SB銲料。
    在濕潤力為指標上,三種基材鍍層試片最大濕潤力Fm的表現皆以Sn-Pb/Ni-P鍍層試片的濕潤力表相對較大,依次為在Sn/Ni-P與Au/Ni-P鍍層試片。於四種銲料中濕潤力之表現上皆以SB銲料之表現為最差。另顯示濕潤性之結果是受到鍍層的不同所影響。
    在濕潤角(θ)之計算上,對C5191之Sn-Pb/Ni-P、Sn/Ni-P與Au/Ni-P鍍層三種試片,於SP銲料時各為 20.3°、37.5°與53.0°,於SC銲料時各為29.1°、31.2°與 69.0°,在SAC銲料時各為 19.0°、37.7°與53.3°,於SB銲料時各為17.9°、58.7°及non-wetting。
    三種基材之鍍層試片與四種銲料反應之銲點強度,於含微鉛之Sn-Pb/Ni-P之鍍層試片與SB銲料有較佳之銲點強度;另在銲點強度與濕潤性相對應比較,引腳基材如為含微鉛量之Sn-Pb/Ni-P鍍層會較Sn/Ni-P鍍層有較佳之濕潤性與銲點強度。


    The wettability and mechanical properties between Sn-0.7wt%Cu, Sn-3.0wt%Ag-0.5wt%Cu, Sn-58wt%Bi and Sn-37wt.%Pb solders under Sn- Pb/Ni-P, Sn/Ni-P and Au/Ni-P plating finished on C5191 (Cu-4.0wt%Sn -0.2wt%P), C7521 (Cu-18.0wt%Ni) and C2680 (Cu-18.0wt%Zn) substrates were investigated in this work, which includes the wetting balance and shear strength measurement.
    A vertical substrate plate is immersed into a molten solder bath. The force performed on the plate is measured by utilizing a wetting balance. Experimental results demonstrate the basic wettability of diverse lead-free solders on difference substrate’s plating finished by a wetting balance, such as wetting time, wetting force, contact angle and surface tension.
    Moreover, the solder’s wettability compared with the shear strength of the joints under difference substrate’s plating finished. The results of this studying, it clarifies the shear strength of joints varies by plating finished, irrespective of the under substrate. And Pb additions as small as 10% composition in Sn plating finished, it will be improved wettability due to soldering and strength of the joints.

    目 錄 摘要…………………………………………………………………………..I 目錄………………………………………………………………………....III 圖目錄………………………………………………………………….…..VI 表目錄…………………………………………………….………………...X 第一章 簡介……………………………………….…..….………………….1 1-1銲接…………...………………………….………..……………….…..1 1-2銲接材料性質…………………………………...………………....…..5 1-3無鉛化…………………………………………………...……...….…..8 1-4無鉛銲料……………………………….……………...….……..……10 1-4.1純錫 (Sn)……………………………………………...……..…10 1-4.2錫-銀共晶銲錫 (Sn-3.5wt%Ag)………………………….....…11 1-4.3錫-銅共晶銲錫 (Sn-0.7wt%Cu).…………………………....…11 1-4.4錫-銀-銅銲錫 (Sn-Xwt%Ag-Ywt%Cu) ……………….........…12 1-4.5錫-鉍共晶銲錫 (Sn-58wt% Bi) .…………………………….…12 1-5銅合金…………………….……………………..………………....….16 1-5.1紅銅……………………………………..………………........…16 1-5.2黃銅……………………………………..…………………....…17 1-5.3青銅………………………………………..……………………17 1-5.4白銅……………………………………..………………........…17 1-6研究動機…………………………..……….………..……………..…20 第二章 研究理論之基礎……………………………………….………21 2-1濕潤反應之特性…………………………………………….…….….21 2-2濕潤角…………………………………………………………….…..22 2-3 Wihelmy plate法與濕潤力………………………………………...…25 2-4濕潤天平…………………………………………………….…….….30 2-5銲點強度…………………………………………………………..….37 第三章 研究方法……………………………………………………..….41 3-1實驗設備與儀器…………………………………………..……….....41 3-2實驗材料………………………………………………………...…....42 3-3試片與銲料合金之備製……………………………………..…….....43 3-3.1濕潤性試驗材料備製………………………………………......43 3-3.2銲點剪切試驗材料備製…………………………….……….....44 3-4濕潤性質之量測……………………………………………………...47 3-5銲點強度之量測……………………………………………..….…....49 第四章 結果與討論………………………………………………..……51 4-1鍍層處理對濕潤時間與濕潤力之影響……………………..…….....51 4-1.1鍍層處理對濕潤時間之影響…………………...……………...57 4-1.2鍍層處理對濕潤力之影響…………………...……..……….....66 4-2銲料對濕潤時間與濕潤力之影響…………………………..…..…...71 4-2.1銲料對濕潤時間的影響………...…………………..…....….....71 4-2.2銲料對濕潤力的影響………...………………..……..…….…..78 4-3基材對濕潤時間及濕潤力之影響…………………………..…...…..82 4-4表面張力及濕潤角之計算…………………………………....….…..84 4-5銲料、基材及鍍層對銲點強度之影響………………………....…...89 4-5.1銲接接點之剪切拉伸強度之量測及剪應力計算……..............89 4-5.2銲料對銲點強度之影響…………………...……….....………..96 4-5.3鍍層處理對銲點強度之影響....…………………..........…..105 4-5.4銲點強度與濕潤性之對應比較…………………….......….....105 第五章 結論…………………………………………..…………….…...108 第六章 參考文獻…………………………………………………..…...111

    第六章 參考文獻

    1. G. Humpston, D.M. Jacobson, “Principles of soldering and brazing”, ASM International, (1993).
    2. J. C. Berg, “Wettability,” Marcel Dekker. Inc., New York, (1993).
    3. 陳信文,陳立軒,林永森,陳志銘,”電子構裝技術與材料” ,第十一章。(2004)
    4. R. J. Wassink, “Soldering in Electronics,” Electrochemical Publications Ltd., pp. 99 (1984).
    5. Catalog, Courtesy of Research Inc.
    6. H. Baker, “ASM Handbook Vol. 3, Alloy Phase Diagrams,” ASM Inte- rnational, Materials Park, Ohino, pp. 2335 (1992).
    7. C. Ernhart and S. Scarr, “New Directions in Child and Family Research,” presented at the ACYF research conference. (1991).
    8. B. Cardin and H. Waxman, “Lead-based paint hazard abatement Act.” (H2922) (1991).
    9. T. B. Massalski, “Binary Alloy Phase Diagrams,” William W. Scott publisher, Vol. 1, pp. 71, 965 (1986).
    10. H. H. Manko, “Solders and Soldering,” McGraw-Hill Book Company, New York, pp. 63, 313 (1992).
    11. M. Abtew, and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering R, Vol. 27, pp. 95-41 (2000).
    12. C. Lea. A, “Scientific Guide to Surface Mount Technology,” Electro- chemical Publications Ltd., pp. 378-379 (1989).
    13. W. R. Lewis, “Notes on Soldering,” The Australian Institute of Refrigeration Air Conditioning and Heating Inc., Vol. 3, pp. 60 (1949).
    14. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-fiee solder joints in electron packaging technology,” Materials Science and Engineering Reports, R38, 55-105 (2002).
    15. A. G. Robert. and E. F. Morris, “Growth of η-phase Scallops and Whisker in Liquid Tin-Solid Copper Reaction Couples,” JOM, Vol. 53, pp. 33-38 (2001).
    16. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 23, pp. 765-772 (1994).
    17. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn-3.5Ag solder in Microbonding,” IEEE Trans. Comp. Hybrids Manu. Tech., Vol. 13, pp. 736-742 (1990).
    18. P. Biocca, “Global Update on Lead-Free Solders,” Surface Mount Technology, Vol. 13, pp. 3 (1999).
    19. T. Laine-Ylijoki, H. Steen and A. Forsten, “Development and Validation of a Lead-Free Alloy for Solder Paste Application,” IEEE Trans. Comp. Hybrids Manu. Tech., Vol. 20, pp. 194-198 (1997).
    20. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5Ag solder Alloy under Creep,” Journal of Electronic Materials, Vol. 29, pp. 1356-1361 (2000).
    21. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly,” International Materials Reviews, Vol. 40, pp. 65-93 (1995).
    22. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties,” Appl. Phys. Lett., Vol. 63, pp. 15-17 (1993).
    23. D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates,” Journal of Electronic Materials, Vol. 26, pp. 883-887 (1997).
    24. B. Trumble , ”Get The Lead Out,” IEEE Spectrum, pp. 55-60 (1998).
    25. N. C. Lee, “Getting Ready for Lead-free Solder,” Soldering & Surface Mount Technology, pp. 65-69 (1997).
    26. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu,” Microelectronics Reliability, Vol. 43, pp. 259-267 (2003).
    27. M. O. Alam, Y. C. Chan, K. N. Tu, “Effect of 0.5wt% Cu Addition in Sn- 3.5Ag% Solder on the Dissolution Rate of Cu Metallization,” Journal of Applied Physics, Vol. 94, pp. 7904-7909 (2003).
    28. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review,” Journal of Elec- tronic Materials, Vol. 23, pp. 693-700 (1994).
    29. C. Melton, “The Effect of Reflow Process Variables on the Wetability of Lead-Free Solders,” JOM, Vol. 45, pp. 33 (1993).
    30. C. H. Raeder, L. E. Felton, D. B. Knorr, G. B. Schmeelk, and D. Lee, IEEE/CHMT intel Electronics Manufacturing Technology Symposium, pp. 119 (1993).
    31. Catalog, The Furukawa Electric Co., Ltd., Japen. (2004).
    32. Catalog, Mitsubishi Electric Metecs Co., Ltd., Japen. (2002).
    33. Catalog, Yamaha-Olin Matel Corporation, Japen. (2006).
    34. 第一伸銅科技股份有限公司型錄。(2005).
    35. M. S. Lee, C. M. Liu and C. R. Kao, “Interfacial reactions between Ni substrate and the component Bi in solders,” Journal of Electronic Materials, Vol. 28, pp. 57-62 (1999).
    36. 蕭本俐、何政恩、高振宏,中國材料學會1999年年會論文,H42。(1999)
    37. R. J. K. Wassink, “Solder in Electronics”, Electrochemical Publications Ltd., pp. 300-370 (1989).
    38. S. W. Yoon, W. K. Choi and H. M. Lee, “Calculation of surface tension and wetting properties of Sn-Based solder alloys,” Scripta Materialia, Vol. 40, pp. 297-302 (1999).
    39. F. G. Yost, “Fundamentals of wetting and spreading with emphasis on soldering,” The Metal Science of Joining, pp. 49-59 (1992).
    40. F. C. Goodrich, “Proceedings of the Royal Society of London. Series A: Mathematical,” Physical and Engineering Sciences, A260, pp. 481 (19 61).
    41. W. Adamson, “Physical Chemistry of Surfaces,” A Wiley-Interscience Publication, New York. (1982).
    42. IPC/EIA/JEDEC J-STD-002B, ”Solderability Tests for component Leads, Terminations, Lugs, Terminals and Wires.” (2003).
    43. Instruction Manual for SAT-5000, Rhesca Co., LTD. (2004).
    44. J. Y. Park, C. S. Kang and J. P. Jung, Journal of Electronic Materials , Vol. 28, pp. 1256-262 (1999).
    45. P. T. Vianco, F. M. Hosking, and J. A. Rejent, Proceedings of the NEPCON West 1992 Conference, Anaheim, CA, Cahners Exposition Group, Des Plaines, IL, pp. 1730-1738. (1992)
    46. W. J. Boettinger, C. A. Handwerker and L. C. Smith, “The Metal Science of Joining,” pp. 183-189 (1992).
    47. 李柔儀,”以濕潤天平量測錫銅及錫鉍無鉛焊料之濕潤性”,國立清華大學,化學工程研究所碩士論文。(2001)
    48. 張秀玉,”無鉛焊料與基材反應濕潤”,國立清華大學,化學工程研究所碩士論文。(2002)
    49. H. L. Pang John, H. T. Kwang, X. Shi and Z. P. Wang, ”Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen,” Transactions on Component and Pack- aging Technologies, Vol. 24, pp. 10-15 (2001).
    50. F. Hua, C. M. Garner, H. G. Song, and J. W. Morris, “Creep of Pb-Free Solders,” Intel Papers. (2001).
    51. ASTM F1269-89, “Test Methods for Destructive Shear Testing of Ball Bonds,” American Society for Testing of Materials. (1995).
    52. J. C. Foley, A. Gickler, F. H. Leprovost, and D. Brown, “Analysis of Ring and Plug Shear Strengths for Comparison of Lead-Free Solders,” Journal of Electronic Materials, Vol. 29, pp. 1258-1263 (2000).
    53. S. Ahat, H. Weidong, S. Mei and L. Le, “Joint Shape, Microstructure, and Shear Strength of Lead-Free Solder Joints with Different Component Terminations,” Journal of Electronic Materials, Vol. 31, pp. 136-141 (2002).
    54. J. H. Lau, C. P. Wang, N. C. Lee, and S. W. Ricky-Lee, “Electronics Manufacturing: With Lead-free, Halogen-free, and Conductive,” McGraw-Hill Book Company. (2003).

    QR CODE