簡易檢索 / 詳目顯示

研究生: 黃東平
Dong-ping Huang
論文名稱: 鐵鉻合金與鎳-釔安定化氧化鋯陶金之界面反應及接合之研究
Study on Interfacial Reactions between Iron-Chromium Alloy and Nickel-Yttria Stabilized Zirconia Cermet,and Joint Behavior
指導教授: 顏怡文
Yee-wen Yen
口試委員: 李嘉平
Chiapyng Lee
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 186
中文關鍵詞: 界面反應鎳-釔安定化氧化鋯陶金不鏽鋼硬銲
外文關鍵詞: interfacial reaction, Ni-YSZ cerment, stainless steel, brazing
相關次數: 點閱:247下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態氧化物燃料電池的系統中,不鏽鋼材料是近年來熱門的雙極板材料,主要元素為Fe-Cr-Ni;陽極材料為鎳-釔安定化氧化鋯陶金。本研究主要著重在探討4種Fe-Cr合金與Ni界面反應關係,並以真空硬銲方式,使用Ag-Cu與商用Ag基活性填料,接合商用430不鏽鋼與Ni-YSZ陶金。
    Fe-Cr/Ni界面反應,當Fe-Cr合金組成為Fe-16、25wt%Cr時,界面可以觀察到γ與α+α’的兩相混合區;當Fe-Cr合金組成為Fe -80、94wt%Cr時,界面則可以觀察到γ+α’的兩相混合區。隨著反應時間及溫度的增加,合金含Cr量的減少,反應層厚度隨之變厚,總厚度與時間平方根成正比關係,符合拋物線定律,反應為擴散控制。
    商用430不鏽鋼與陽極Ni-YSZ之接合,採用Ag-Cu與商用Ag基活性填料,以真空硬銲方式進行,將系統簡化為Ni、YSZ、430不鏽鋼與Ni-YSZ與填料反應。在Ag-Cu/Ni的液固反應中,Ni基材界面會隨填料含Cu量,逐漸生成(Cu,Ni)固溶體。穩定(Cu,Ni)固溶體生成,會減緩Cu原子往Ni基材擴散之趨勢。探討Ag-Cu/電鍍 Ni/ 430不鏽鋼的液固反應,含Cu量低的填料,界面越平整,反應層為γ(Fe,Ni);含Cu量高的填料,界面越粗糙,反應層為(Cu,Ni).γ(Fe,Ni)。
    使用商用Silver ABA填料接合YSZ/430不鏽鋼,在YSZ界面上可以觀察到TiO/Cu2(Ti,Al)4O生成,隨著溫度與時間增加,生成相轉為TiO, Al2O3/Cu2(Ti,Al)4O,Cu2(Ti,Al)4O 會逐漸被TiO取代且其形態也會轉為島嶼狀。430不鏽鋼界面上生成物短時間為過飽和固溶Ti的AlCu2Ti/Ti-rich,長時間下轉為Ti-rich;使用商用Cusil ABA填料,在YSZ界面上則可以觀察到TiO/ Cu3Ti3O/Cu2Ti4O生成,隨著溫度與時間增加,Cu2Ti4O會逐漸溶解而消失,430不鏽鋼界面上生成物無論時間長短,均為Cu-Ti化合物;使用商用Ag50Cu48Ti2填料,在YSZ界面上則可以觀察到TiO/Cu3Ti3O生成,隨著溫度與時間增加,Cu3Ti3O會逐漸剝離至填料中,430不鏽鋼界面上生成物無論時間長短,均為Cu-Ti化合物。
    使用商用Silver ABA填料接合Ni/430不鏽鋼,在Ni界面處短時間下共有三反應層AlNi3/TiNi3/AlNi2Ti,長時間持溫下最終只有AlNi3穩定存在,430不鏽鋼界面上生成物無論時間長短,均為Ti-rich。使用商用Cusil ABA填料,在Ni界面處生成(Cu,Ni)固溶體,填料區為固化後之常溫組織,在831℃以下,主要由Ag-rich、針狀TiNi3及島嶼狀(Cu,Ni)固溶體組成,溫度861℃以上,島嶼狀(Cu,Ni)固溶體會轉為層狀並固溶2.4at.%Ti,在430不鏽鋼界面上並無明顯生成物。使用商用Ag50Cu48Ti2填料,在Ni界面處生成(Cu,Ni)固溶體,填料區為固化後之常溫組織,在838℃以下,主要由Ag-rich、針狀TiNi3、島嶼狀(Cu,Ni)固溶體及大團塊Cu-rich組成,溫度為868℃時,大團塊Cu-rich轉為島嶼狀(Cu,Ni)固溶體,在430不鏽鋼界面上並無明顯生成物。


    The stainless steels are one of the popular interconnect materials in the SOFC systems recently. The anode material is Nickel-Yttria Stabilized Zirconia cermet (Ni-YSZ). In this study, interfacial reactions between Fe-Cr alloys and Ni-YSZ were experimentally investigated at specific temperatures and the vacuum brazing of Ni-YSZ to stainless steel was carried out using Ag-Cu and Ag-based alloys as active fillers.
    In Fe-Cr/Ni reaction couples, Cr in 16 or 25 wt%, the reaction layer were γ and α+α’ at 750℃; When the temperature is 850℃, α+α’ will turn to γ+α’. As Cr is in 80 or 94wt%, the reaction layer were γ+α’ two phase region at 750、850℃. The thickness of reaction layers increased with low Cr%, long time and higher temperature, and the growth mechanism can be described by using parabolic law.
    In Ag-Cu/Ni reaction couples, (Cu,Ni) solid solution formed gradually which increased with reaction time and Cu%. It seems that (Cu,Ni) solid solution is the diffusion barrier in Ag-Cu/Ni reaction couples.
    In Ag-Cu/EP Ni/430SS reaction couples, the filler of content of low Cu, the morphology is smooth and the reaction layer was γ(Fe,Ni). On the contrary, high content of Cu, the reaction layer was (Cu,Ni).γ(Fe,Ni).
    Joining of 8YSZ to 430SS has been carried out using Silver ABA filler. Interface microstructure found between filler and YSZ were TiO and Cu2(Ti,Al)4O; Increased with time and temperature the reaction products were Al2O3-TiO/Cu2(Ti,Al)4O phases. The Cu2(Ti,Al)4O will be replaced by TiO and the morphology turn to island gradually. At braze/430SS interface a discontinuous layer identified as Ti-rich formed.
    Joining of 8YSZ to 430SS has been carried out using Cusil ABA filler. The microstructure at the interface, three reaction products TiO、Cu3Ti3O and Cu2Ti4O phases formed between filler and YSZ; Increased with time and temperature, the Cu2Ti4O will dissolve into filler and disappear gradually. At braze/430SS interface a discontinuous layer identified as Cu-Ti formed.
    Joining of 8YSZ to 430SS has been carried out using Ag50Cu48Ti2 filler. The reaction layers at the interface between filler and YSZ were TiO and Cu3Ti3O phases; Increased with time and temperature the reaction layer Cu3Ti3O spalling into filler gradually. At braze/430SS interface a discontinuous layer identified as Cu-Ti formed.
    Joining of Ni to 430SS has been carried out using Silver ABA filler. Three types reaction layers formed at the interface between filler and Ni were AlNi3/TiNi3/AlNi2Ti phases; Increased with time and temperature,only AlNi3 can stabilize the existence. At braze/430SS interface a discontinuous layer identified as Ti-rich formed.
    Joining of 8YSZ to 430SS has been carried out using Cusil ABA filler. The microstructure at the interface between filler and Ni were (Cu,Ni) solid solution; In the filler matrix, spread a lot of acicular TiNi3 and form (Cu,Ni) in island; At braze/430SS interface have not observed reaction layers clearly.
    Joining of 8YSZ to 430SS has been carried out using Ag50Cu48Ti2 filler, have similar results with Cusil ABA filler.

    第一章 前言..........................................................1 第二章 文獻回顧與理論基礎............................................3 2-1 固態氧化物燃料電池簡介......................................3 2-2 固態氧化物燃料電池雙極板材料相關研究.......................12 2-3 固態氧化物燃料電池密封材料相關研究.........................14 2-4 相平衡圖...................................................16 2-4.1 Fe-Cr二元相平衡圖..........................................17 2-4.2 Ni-Cr二元相平衡圖..........................................18 2-4.3 Fe-Ni二元相平衡圖..........................................19 2-4.4 Fe-Cr-Ni三元相平衡圖.......................................20 2-5 擴散機制與界面反應.........................................23 2-6 金屬與陶瓷的接合技術.......................................27 2-6.1 擴散接合...................................................28 2-6.2 真空硬銲...................................................29 2-6.3 不鏽鋼與氧化物陶瓷接合相關研究文獻.........................31 第三章 實驗方法.....................................................39 3-1 合金製備...................................................39 3-2 反應偶製備.................................................43 3-3 YSZ塊材製備................................................44 3-4 Ni-YSZ cermet塊材製備......................................45 3-5 電鍍.......................................................48 3-6 真空硬銲...................................................50 3-7 試片分析...................................................53 第四章 結果與討論...................................................56 4-1 Fe-Cr合金/Ni基材界面反應...................................56 4-2 Ag-Cu填料系統..............................................77 4-2.1 Ag-Cu填料/Ni基材液固反應...................................77 4-2.2 430SS/EP Ni固固反應........................................94 4-2.3 430SS/EP Ni/Ag-Cu液固反應..................................96 4-3 Ag基活性填料系統..........................................101 4-3.1 430SS/商用Silver ABA填料/8YSZ基材液固反應.................101 4-3.2 430SS/商用Cusil ABA填料/8YSZ基材液固反應..................117 4-3.3 430SS/商用Ag50Cu48Ti2填料/8YSZ基材液固反應................129 4-3.4 430SS/商用Silver ABA填料/Ni基材液固反應...................146 4-3.5 430SS/商用Cusil ABA填料/Ni基材液固反應....................157 4-3.6 430SS/商用Ag50Cu48Ti2填料/Ni基材液固反應..................168 第五章 結論........................................................177 第六章 參考文獻....................................................180

    1.SECA Core Technology Program-SOFC interconnect Meeting, July28-29, (2004).
    2.Z. Yang, J. W. Stevenson, K. D. Meinhardt, Solid State Ionics, vol.160, pp.213-225 (2003).
    3.F. Tietz, H. P. Buchkremer, D. Stover, ”Components manufacturing for solid oxide fuel cells”, Solid State Ionics, vol.152-153, pp. 373-381 (2002).
    4.T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, “Material research for planar SOFC stack”, Solid State Ionics, vol.148, pp. 513-519 (2002).
    5.Subhash C. Singhal and Kevin Kendall in “ High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Advanced Technology, New York, USA (2003).
    6.衣寶廉,燃料電池-高效、環保的發電方式,五南圖書出版股份有限公司,台北,pp. 167-187 (2003)。
    7.S. P. S. Badwal, ”Stability of solid oxide fuel cell components”, Solid State Ionics, vol.143,pp. 39-46 (2001).
    8.J. Duquette and A. Petric, ”Silver wire seal design for planar solid oxide fuel cell stack”, Journal of Power Sources, vol.137, pp. 71-75 (2004).
    9.Siemens Westinghouse, http://www.siemenswestinghouse.com
    10.Mitsubishi Heavy Industries, Ltd., http://www.mhi.com.jp
    11.Sulzer Hexis AG, Switzerland, http://www.hexis.com
    12.黃炳照、鄭銘堯,”固態氧化物燃料電池之進展”,化工技術第10卷,第6期,pp. 132-148 (2002)。
    13.W. Z. Zhu, S.C. Deevi, ”Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering, vol.348A, pp. 227-243 (2003).
    14.K. Huang, P. Y. Hou, J. B. Goodenough, “Characterization of iron-based alloy interconnect for reduced temperature solid oxide fuel cells”, Solid State Ionics, vol.129, pp. 237-250 (2000).
    15.T. Brylewski, M. Nanko, T. Marutama, K. Przybylski, “Application of Fe-16Cr ferritic alloy to interconnector for solid oxide fuel cell”, Solid State Ionics, vol.143, pp. 131-150 (2001).
    16.W. Z. Zhu, S. C. Deevi, “Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, vol.38, pp. 957-972 (2003).
    17.S. Linderoth, P. V. Hendriksen, M. Mogensen, “Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks”, Journal of Materials Science, vol.31, pp. 5077-5082 (1996).
    18.W. A. Meulenberg, A. Gil, E. Wessel, H. P. Buchkremer and D. Stover, ”Corrosion and interdiffusion in a Ni/Fe-Cr-Al couple used for the anode side of multi-layered interconnector for SOFC applications”, Oxidation of Metals, vol.57, pp. 1-12 (2002).
    19.H. Kurokawa, K. Kawamura, T. Maruyama, ”Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics, vol.168, pp. 13-21 (2004).
    20.T. Horiata, Y. Xiong, H. Kishimoto, K. Yamaji, N. Sakai, H. Yokokawa, “Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction oxidation behavior of alloys in methane fuel”, Journal of Power Sources, vol.131, pp. 293-298 (2004).
    21.Z. Zeng, K. Natesan, “Corrosion of metallic interconnects for SOFC in fuel gases”, Solid State Ionics, vol.167, pp. 9-16 (2004).
    22.T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, “Stability of Fe-Cr alloy interconnects under CH4-H2O atmosphere for SOFCs”, Journal of Power Sources, vol.118, pp. 35-43 (2003).
    23.L. Jian, J. Huezo, D. G. Ivey, “Carburisation of interconnect materials in solid oxide fuel cells”, Journal of Power Sources, vol.123, pp. 151-162 (2003).
    24.H. W. Nie, T. L. Wen, H. Y. Tu, “Protection coatings for planar solid oxide fuel cell interconnect prepared by plasma spraying”, Materials Research Bulletin, vol.38, pp. 1531-1536 (2003).
    25.J. H. Zhu, Y. Zhang, A. Basu, Z. G. Lu, M. Paranthaman, D. F. Lee, E. A. Payzant, “LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications”, Surface and Coatings Technology, vol.177-178, pp. 65-72 (2004).
    26.S. B. Sohn, S. Y. Choi, G. H. Kim, H. S. Song and G. D. Kim, “Suitable glass-ceramic sealant for planar solid oxide fuel cells”, Journal of the American Ceramic Society, vol.87, pp. 254-260 (2004).
    27.K. L. Ley, M. Krumpelt, R. Kumar, J. H. Meiser, and I. Bloom, “Glass-ceramic sealants for solid oxide fuel cells: Part I. Physical properties”, Journal of Materials Research, vol.11, pp. 1489-1493 (1996).
    28.K. Eichler, G. Solow, P. Otschik and W. Schaffrath, “BAS(BaO.Al2O3.SiO2)-glasses for high temperature applications”, Journal of the European Ceramic Society, vol.19, pp. 1101-1104 (1999).
    29.K. S. Weil, J. Y. Kim and J. S. Hardy, “Reactive air brazing: A novel method of sealing SOFCs and other solid state electrochemical devices”, Electrochemical and Solid-State Letters, vol.8, pp. A133-A136 (2005).
    30.J. Y. Kim, J. S. Hardy and K. S. Weil, “Novel metal-ceramic joining for planar SOFCs”, Journal of The Electrochemical Society, vol.152, pp. J52-J58 (2005).
    31.R. Wilkenhoener, H. P. Buchkremer, D. Stoever, and D. Stolten, “Brazing of metallic conductors onto ceramic plates in solid oxide fuel cells”, Journal of Materials Science, vol.36, pp. 1783-1788 (2001).
    32.J. W. Fergus, “Sealants for solid oxide fuel cells”, Journal of Power Sources, vol.147, pp. 46-57 (2005).
    33.T. B Massalski and H. Okamoto in, “Binary Alloy Phase Diagrams, 2nd Edition, Vol. 2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA, pp. 1271-1773 (1990).
    34.P. Nash, in “Binary Alloy Phase Diagrams, 2nd Edition, Vol. 2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA , pp. 1298, 1301-1302 (1990).
    35. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, in “Binary Alloy Phase Diagrams, 2nd Edition, Vol.2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA, pp. 1735-1738 (1990).
    36.Yen and Huang, in prepare for publication.
    37.F. J. J. van Loo, J. A. van Beek, G. F. Bastin and R. Metselaar in “ Diffusion in Solids: Recent Developments”, edit by M. A. Dayananda and G. E. Murch, The Metallurgical Society, Inc., Warrendale, Pennsylvania, USA (1985).
    38.J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, vol.2, pp. 89-117 (1963).
    39.莊東漢,”擴散接合技術探討”機械月刊,21卷,12期,pp. 198-209 (1995)。
    40.薛人愷,”硬銲之基本原理及應用”銲接與切割,7卷,3期,pp. 33-43 (1997)。
    41.莊東漢,”陶瓷與金屬接合技術及應用”中華民國陶業研究學會會刊,7卷,4期,pp. 20-33 (1988)。
    42.蘇程裕、蘇裕超、周長彬,”陶瓷與金屬的硬銲接合研究”中華民國陶業研究學會會刊,20卷,2期,pp. 24-36 (2001)。
    43.蘇程裕、周長彬、吳柏成、劉茂賢,”真空硬銲的原理與應用”工業材料,120期,pp. 58-62 (1996)。
    44.黃財賞,”活性擴散硬銲之原理與應用”機械月刊,23卷,6期,pp. 323-340 (1997)。
    45.蘇程裕、酈唯誠、周長彬、黃財賞,”Mar-M247暫態液相擴散接合組織及其機械性質研究”銲接與切割,9卷,2期,pp. 66-75 (1999)。
    46.劉茂賢、吳清勳,”真空熱處理及硬焊之原理與發展應用”工業材料,205期,pp. 168-173 (2004)。
    47.Y. Zhou, W. F. Gale and T. H. North, “Modeling of Transient Liquid Phase Bonding”, International Material Reviews, vol.40, pp. 181-196 (1995).
    48.C. D. Qin and B. Derby, “Diffusion bonds between a stainless steel and zirconia”, Journal of American Ceramic Society, vol.76, pp. 232-234 (1993).
    49.N. Iwanoto and H. Yokoo, “Joining of zirconia to metals using Zr-Cu alloy”, Engineering Fracture Mechanics, vol.40, pp. 931-940 (1991).
    50.K. F. Lin and C. C. Lin, “Interfacial reactions between zirconia and titanium”, Scripta Materialia, vol.39, pp. 1333-1338 (1998).
    51.K. S. Weil, J. S. Hardy, J. P. Rice and J. Y. Kim, “Brazing as a means of sealing ceramic membranes for use in advanced coal gasification processes”, Fuel, vol.85, pp. 156-162 (2006).
    52.W. B. Hanson, K. I. Ironside and J. A. Fernie, “Active metal brazing of zirconia”, Acta Materialia, vol.48, pp. 4673-4676 (2000).
    53.L. D. Wang and T. Oki, “Reaction behavior of joining interface of zirconia-SUS304 by active metal brazing using Ti”, Journal of the Ceramic Society of Japan, vol.103, pp. 671-674 (1995).
    54.H. Hao, Y. Wang, Z. Jin and Z. Wang, “Joining of zirconia ceramic to stainless steel and itself using Ag57Cu38Ti5 filler metal”, Journal of American Ceramic Society, vol.78, pp. 2157-2160 (1995).
    55.Y. H. Chai and T. H. Chuang, “Brazing of zirconia ceramic with superalloys by active filler metal”, Chinese Journal of Materials Science, vol.27, pp. 171-177 (1995).
    56.Y. Lee and J. Yu, “The evolution of interface microstructures in a ZrO2/Ag-Cu-Al-Ti system”, Scripta Metallurgica et Materialia, vol.29, pp. 371-376 (1993).
    57.Y. Lee and J. Yu, “Interface strengths in a ZrO2/Ag-Cu-Al-Ti system”, Ceramics International, vol.21, pp. 395-398 (1995).
    58.T. I. Khan and A. Al-Badri, “Reactive brazing of ceria to an ODS ferritic stainless steel”, Journal of Materials Science, vol.38, pp. 2483-2488 (2003).
    59.J. P. Hammond, S. A. David and M. L. Santella, “Brazing ceramic oxides to metals at low temperatures”, Welding Journal, vol.67, pp. 227s-232s (1988).
    60.M. Singh, T. P. Shpargel and R. Asthana, “Brazing of stainless steel to YSZ using silver-base brazes”, Ceramic Engineering and Science Proceedings, vol.26, pp. 383-390 (2005).
    61.J. X. Zhang, R. S. Chandel and H. P. Seow, “Effects of chromium on the interface and bond strength of metal-ceramic joints”, Materials Chemistry and Physics, vol.75, pp. 256-259 (2002).
    62.T. Studinitzky and R. Schmid-Fetzer, “Diffusion soldering for stable high temperature thin film bonds”, JOM, vol.54, pp. 58-63 (2002).
    63.Abed, I. S. Jalham and A. Hendry, “Wetting and reaction between β’-sialon, stainless steel and Cu-Ag brazing alloy containing Ti”, Journal of the European Ceramic Society, vol.21, pp. 283-290 (2001).
    64.Y. S. Chuan and T. Iseki, “Interfacial phenomena in joining of ceramics by active metal brazing alloy”, Engineering Fracture Mechanics, vol.40, pp. 941-949 (1991).
    65.J. V. Emiliano, R. N. Correia, P. Moretto and S. D. Peteves, “Zirconia-Titanium Joint Interfaces”, Materials Science Forum, vol.207-209, pp. 145-148 (1996).
    66.S. Suenaga, M. Nakahashi, M. Maruyama and T. Fukasaw, “Interfacial reactions between Sapphire and silver-copper-titanium thin film filler metal”, Journal of the American Society, vol.80, pp. 439-444 (1996).
    67.W. Byun and H. Kim, “Variations of phases and microstructure of reaction products in the interface of Al2O3/Ag-Cu-Ti joint system with heat treatment”, Scripta Metallurgica et Materialia, vol.31, pp. 1543-1547 (1994).
    68.F. Barier, C. Peytour and A. Revcolevschi, “Microstructural study of the brazed joint between Alumina and Ti-6Al-4V alloy”, Journal of the American Society, vol.73, pp. 1582-1586 (1990).
    69.M. L. Santella, J. A. Horton and J. J. Pak, “Microstructure of Alumina brazed with a Silver-Copper-Titanium alloy”, Journal of the American Society, vol.73, pp. 1785-1787 (1990).
    70.M. L. Muolo, E. Ferrera, L. Morbelli and A. Passerone, “Wetting, spreading and joining in the alumina-zirconia-Inconel 738 system”, Scripta Materialia, vol.50, pp. 325-330 (2004).
    71.H. Q. Hao, Y. L. Wang, Z. H. Jin and X. T. Wang, “Joining of zirconia to zirconia using Ag-Cu-Ti filler metal”, Journal of Materials Processing Technology, vol.52, pp. 238-247 (1995).
    72.T. Iseki, H. Matsuzaki and J. K. Boadi, “Brazing of silicon carbide to stainless steel”, American Ceramic Society Bulletin, vol.64, pp. 322-324 (1985).
    73.R. Xu and J. E. Indacochea, “Silicon nitride-stainless steel braze joining with an active filler metal”, Journal of Materials Science, vol.29, pp. 6287-6294 (1994).
    74.A. H Carim, “Convergent-beam electron diffraction fingerprinting of M6X phase at brazed ceramic joints”, Scripta Metallurgica et Materialia, vol.25, pp. 51-54 (1991).
    75.R. W. Bene, “First nucleation rule for solid-state nucleation in metal-metal thin film systems”, Applied Physics Letters, vol.41, pp. 529-531 (1982).
    76.M. Ronay, “Reinvestigation of first phase nucleation in planar metal-Si reaction couples”, Applied Physics Letters, vol.42, pp. 577-579 (1983).
    77.J. H. Kim and Y. C. Yoo, “Bonding of alumina to metals with Ag-Cu-Zr brazing alloy”, Journal of Materials Science Letters, vol.16 pp. 1212-1215 (1997).
    78.T. B Massalski and H. Okamoto, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, pp. 6, 29, 65, 142, 186, 1444, 1495, 2875, 2926 (1990).
    79.羅惠慈,鎳與熔融銅銀合金的界面反應,國立清華大學化學工程研究所,碩士論文, 民國84年。
    80.P. Villars, A. Prince and H. Okamoto, Handbook of Ternary Alloy, ASM International, Materials Park, Ohio, pp. 2354, 3374, 3377,4206, 9369, 9855 (1990).

    QR CODE