簡易檢索 / 詳目顯示

研究生: 黃銘德
Ming-de Huang
論文名稱: 利用化學氣相沈積法在流體化床反應器中以高分子合成奈米碳管
Synthesis of Carbon Nanotubes from Polymers by using Chemical Vapor Deposition-Fluidized Bed Reactor
指導教授: 顏怡文
Yee-wen Yen
口試委員: 李嘉平
Chiapyng Lee
周賢鎧
Shyankay Jou
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: 奈米碳管化學氣相沈積-流體化床反應器固態高分子石墨化
外文關鍵詞: CVD-FBR, solid polymer, graphitized, carbon nanotubes
相關次數: 點閱:180下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管是由一層或多層石墨片所構成的特殊中空管狀結構,為純碳所形成,造成其質量輕、高強度、表面曲度大、高熱導度、導電性佳等機械、電性、光學和化學等特性而產生許多新的應用。目前成長奈米碳管主要有電弧放電法、雷射蒸鍍法及化學氣相沈積法,但無法連續式量產以及設備昂貴。流體化床具有高質傳與熱傳的優點,並且可連續操作及大量生產,文獻中已成功將其用於製備奈米碳管。另外文獻中已有成功實例,以高分子利用化學氣相沈積法來成長奈米碳管。因此本研究擬以高分子聚合物,如:聚碳矽烷(PCS)與聚乙烯(PE)等高分子作為成長奈米碳管之碳的來源,以自行配製之鐵於氧化鎂載體做為催化劑,並利用自行設計之流體化床反應器來做為實驗的裝置,經由改變溫度、催化劑與高分子重量比、高分子種類以及流量等變數,直接於大氣壓下成長奈米碳管,尋找出最佳的參數。成長出的奈米碳管以掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)與高解析度穿透式電子顯微鏡(HRTEM) 觀察碳管之結構,並利用拉曼光譜儀分析碳管石墨化程度。結果顯示使用高分子於流體化床反應器中可成功製備出奈米碳管。利用PE為碳源,Fe2O3/MgO為催化劑,催化劑與高分子重量比為1:3,上及下層溫度分別為750 ℃及850 ℃,10 %H2 + 90 %Ar為承載氣體,控制流量於400 cc/min,以此條件反應1小時後可成長出多壁奈米碳管,直徑約40-60 nm,長度可達1 μm,ID/IG之值為0.88。而以PCS為碳源,Fe2O3/MgO為催化劑,催化劑與高分子重量比為1:3,上及下層溫度分別為850 ℃及950 ℃,10 %H2 + 90 %Ar為承載氣體,控制流量於400 cc/min,以此條件反應1小時後雖可看到有碳管存在,但主要仍為絲狀產物,ID/IG之值為1.19,且石墨化程度相較於PE為碳源所得到之碳管差。


    CNTs formed by one layer or the multi-layer graphite are a special hollow structure. It’s made by pure carbon so that it’s in charge of having light weight, high surface area, high thermal conductivity, high strength, and such chemistry, machinery and excellent characteristics of photoelectricity as the electric conductivity is good. Because it has interesting properties, it is extensive studied and nowadays become one of the hottest nano-materials. There are few ways at present to synthesize CNTs by arc discharge, laser ablation and chemical vapor deposition, but unable a large amount of continual production. But the fluidized-bed reactor has possessed the advantage transmitted in high-mass transmission and heat and can operate and produce in a large amount in succession. It is successful to synthesize CNTs by fluidized-bed reactor in literatures. And using polymers to synthesize CNTs has already had a successful instance in literatures. So this research is drafted with the polymers, for instance: The polycarbosilane (PCS) and the polyethylene (PE) regard as the carbon source that the carbon is in charge of growing up and mixing the MgO powder with the Fe2O3 regards as catalyst. Regard the fluidized-bed reactor designed by oneself as the experimental device and find out the optimal parameters for operation such as temperature, weight ratio of catalyst and polymer or flow rate to synthesize CNTs. Properties of CNTs were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution TEM (HRTEM) and Raman spectrum.
    It is successful to synthesize CNTs in the fluidized-bed reactor by using the polymer as the carbon source. CNTs were synthesized by using the parameter of PE as the carbon source, Fe2O3/MgO as catalyst, weight ratio of catalyst and polymer is 1:3, upper temperature is 750 ℃, lower temperature is 850 ℃, 10 %H2 + 90 %Ar as the carrying gas, flow rate is 400 cc/min and reaction time is 1 hour. The diameter is 40-60 nm and the length is longer than 1μm. The value of ID/IG of CNTs is 0.88. Although there is a few CNTs, the major production is fiber-like by using the parameter of PCS as the carbon source, Fe2O3/MgO as catalyst, weight ratio of catalyst and polymer is 1:3, upper temperature is 850 ℃, lower temperature is 950 ℃, 10 %H2 + 90 %Ar as the carrying gas, flow rate is 400 cc/min and reaction time is 1 hour. The value of ID/IG of CNTs is 1.19. The graphitized of CNTs prepared by using PE as the carbon source is better than that prepared by using PCS as the carbon source.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 目錄.....................................................Ⅳ 圖目錄...................................................Ⅵ 表目錄.................................................ⅩⅤ 第一章 前 言.............................................1 第二章 文獻回顧...........................................3 2-1.:奈米碳管............................................3 2-1.1:奈米碳管的起源...................................3 2-1.2:奈米碳管之結構...................................5 2-1.3:奈米碳管之特性..................................10 2-1.4:奈米碳管之應用..................................12 2-1.5:奈米碳管之製造方式..............................14 2-1.6:奈米碳管之成長模型..............................16 2-1.7:奈米碳管之純化..................................19 2-2.:流體化床...........................................19 2-2.1:流體化現象......................................19 2-2.2:流體化之發展....................................20 2-2.3:流體化床之分類..................................20 2-2.4:流體化床之優點..................................21 2-2.5:流體化床之應用..................................22 2-3.:化學氣相沈積-流體化床(CVD-FBR) ...................23 2-3.1:應用於材料表面處理方面..........................23 2-3.2:應用於製備奈米碳管方面..........................24 第三章 實驗方法..........................................34 3-1.:研究方法...........................................34 3-2.:流體化床反應器.....................................35 3-3.:催化劑之製備.......................................36 3-4.:高分子種類.........................................36 3-5.:實驗步驟...........................................38 3-6.:分析方法...........................................39 第四章 結果與討論........................................42 4-1.:以PCS為碳來源所得之結果...........................42 4-1.1:以不同溫度來成長奈米碳管........................51 4-1.2:以不同催化劑與PCS比例來成長奈米碳管............53 4-1.3:以不同流量來成長奈米碳管........................57 4-1.4:以不同氫含量來成長奈米碳管......................60 4-1.5:利用PCS為碳源,以不同條件來成長奈米碳管之結論...68 4-2.:以PE為碳來源所得之結果............................71 4-2.1:以不同溫度來成長奈米碳管........................77 4-2.2:以不同催化劑與PE比例來成長奈米碳管.............81 4-2.3:以不同流量來成長奈米碳管........................85 4-2.4:以不同氫含量來成長奈米碳管......................88 4-2.5:利用PCS為碳源,以不同條件來成長奈米碳管之結論...95 第五章 結論..............................................99 第六章 參考文獻.........................................101

    1. T.A. Edison, U.S. Patent 470925 (1892).
    2. C. H. Pelabon, Comptes Rendus, vol. 137, pp. 706 (1905).
    3. P. Ball, “Roll up for the revolution”, Nature, Vol. 414, pp. 142-144 (2001).
    4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R.F. Curl and R.E. Smalley, “C60: Buckminsterfullerene”, Nature, Vol. 318, pp.162-163 (1985).
    5. S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58 (1991).
    6. 李忠螢,“製程條件對奈米碳管成長及性質之影響研究”,國立東華大學材料科學與工程研究所碩士論文 (2003).
    7. K. T. Lau and D. Hui, “The revolutionary creation of new advanced materials - carbon nanotube composites”, Composites: Part B, Vol. 33, pp. 263-277 (2002).
    8. 彭志維,“雜亂方向的多層奈米碳管薄膜之場發射特性”,國立清華大學物理學系碩士論文 (2003).
    9. The nanotube site, U.S.A., http://www.pa.msu.edu/cmp/csc/nanotube.html
    10. Jeroen W. G. Wilder, Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley and Cees Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, Vol. 391, pp. 59-62 (1998).
    11. M. M. J. Treacy and T. W. Ebbesen, “Exceptionally high Young's modulus observed for individual carbon nanotubes”, Nature, Vol. 381, pp. 678-680 (1996).
    12. C. F. Cornwell and L. T. Wille, “Simulation of the elastic response of single-walled carbon nanotube”, Computational Materials Science, Vol. 10, pp. 42-45 (1998).
    13. C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression”, Solid State Commun, Vol. 101, pp. 555-558 (1997).
    14. Y. I. Prylutskyy, S. S. Durov, O. V. Ogloblya, E. V. Buzaneva and P. Scharff, “Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes”, Computational Materials Science, Vol. 17, pp. 352-355 (2000).
    15. Rodney S. Ruoff and Donald C. Lorents, “Mechanical and thermal properties of carbon nanotubes”, Carbon, Vol. 33, pp. 925-930 (1995).
    16. J. Hone, M. Whitney and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Synthetic Metals, Vol. 103, pp. 2498-2499 (1999).
    17. 鐘裕湖,“以高分子聚合物合成奈米碳管之研究”,國立台灣科技大學工程技術研究所材料科技學程碩士論文 (2001)。
    18. 簡介奈米碳管, http://www.chemnet.com.tw/magazine/200208/index5.htm
    19. P. G. Collins and P. Avouris, “Nanotubes for electronics”, Scientific American”, Vol. 283, pp. 62-69 (2000).
    20. Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, “Large scale synthesis of single-wall carbon nanotubes by arc-discharge method”, Journal of Physics of Solids, Vol. 61, pp. 1031-1036 (2000).
    21. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, ”Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, Vol. 243, pp. 49-54 (1995).
    22. B. P. Ramesh, W. J. Blau, P. K. Tyagi, D. S. Misra and N. Ali, “Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition”, Thin Solid Films, Vol. 494, pp. 128-132 (2006).
    23. G. Ning, F. Wei, G. Luo and Y. Jin, ”Online BET analysis of single-wall carbon nanotube growth and its effect on catalyst reactivation”, Carbon, Vol. 43, pp. 1439-1444 (2005).
    24. W. Qian, T. Liu, F. Wei and H. Yuan, ”Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes”, Carbon, Vol. 41, pp. 1851-1864 (2003).
    25. E.F. Kukovitskii, L.A. Chernozatonskii, S.G. L’vov and N.N. Mel’nik, ”Carbon nanotubes of polyethylene”, Chemical Physics Letters, Vol. 266, pp. 323-328 (1997).
    26. Y. H. Chung and S. Jou, ”Carbon nanotubes from catalytic pyrolysis of polypropylene”, Materials Chemistry and Physics, Vol. 92, pp. 256-259 (2005).
    27. S. K. Jou and C. K. Hsu, ”Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane”, Materials Science and Engineering:B, Vol. 106, pp. 275-281 (2004).
    28. H. M. Yen, S. K. Jou and C. J. Chu, ”Si-O-C nanotubes from pyrolyzing polycarbosilane in a mesoporous template”, Materials Science and Engineering:B, Vol. 122, pp. 240-245 (2005).
    29. M. Endo and S. Iijima, ”Carbon nanotubes”, NEC, Japan (1996).
    30. 奈米碳管之合成技術, H. M. Lin, Tatung University, http://nano.mse.ttu.edu.tw/html/doc/Class02_produ/4.pdf
    31. 王裕祥,“利用高分子材料及電弧放電法製造奈米碳管”,國立中正大學化學工程研究所碩士論文 (2002)。
    32. 徐逸明,“化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究”,國立成功大學化學工程研究所博士論文 (2001)。
    33. T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, ”Purification of carbon nanotubes”, Nature, Vol. 367, pp. 519 (1994).
    34. P. X. Hou, S. Bai, Q. H. Yang, C. Liu and H. M. Cheng, ”Multi-step purification of carbon nanotubes”, Carbon, Vol. 40, pp. 81-85 (2002).
    35. 劉建嵩,〝流體化床技術〞,高立圖書有限公司,台北 (1992)。
    36. L. S. Fan, Gas-Liquid-Solid Fluidization Engineering, Butterworths, Stoneham, MA, USA, pp. 1-30 (1989).
    37. D. Kunii and O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann, New York, pp. 1-40 (1991).
    38. Y. W. Yen and S. W. Chen, ”Nickel and copper deposition on fine alumina particles by using the chemical vapor deposition-circulation fluidized bed reactor technique”, Journal of Materials Science, vol. 35, pp. 1439-1444 (2000).
    39. 陳家民,“氣、液、固三相磁流體化床中質傳與流力行為探討”,化學系博士論文,國立台灣大學,台北,台灣 (2000).
    40. 余鴻謀,“氣-液-固三相流體化床之氣體滯留”,化學系碩士論文,國立台灣大學,台北,台灣 (2002).
    41. J. Gaynor, Chemical Engineering Progress, Vol. 56, pp. 75-78 (1960).
    42. A. H. Landrock, Chemical Engineering Progress, Vol. 63, pp.67-74 (1967).
    43. J. L. Kaae, Ceramic Engineering and Science Proceedings, Vol. 9, pp. 1159-1168 (1988).
    44. A. Sanjurjo, M. C. H. McKubre and G. D. Craig, ”Chemical vapor deposition coatings in fluidized bed reactors”, Surface and Coatings Technology, Vol. 39-40, pp. 691-700 (1989).
    45. A. Sanjurjo, B. J. Wood, K. H. Lau, G. T. Tong, D. K. Choi, M. C. H. McKubre, H. K. Song, D. Peters and N. Church, ” Silicon coatings on copper by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, Vol. 49, pp. 103-109 (1991).
    46. A. Sanjurjo, B. J. Wood, K. H. Lau, G. T. Tong, D. K. Choi, M.C. H. McKubre, H. K. Song and N. Church, ”Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, Vol. 49, pp. 110-115 (1991).
    47. B. J. Wood, A. Sanjurjo, G. T. Tong and S. E. Swider, ”Coating particles by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, Vol. 49, pp. 228-232 (1991).
    48. K. H. Lau, A. Sanjurjo and B. J. Wood, ”Aluminum and alumina coatings on copper by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, Vol. 54-55, pp. 234-240 (1992).
    49. A. Sanjurjo, K. Lau, and B. Wood, ”Chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, Vol. 54-55, pp. 219-223 (1992).
    50. C. C. Chen and S. W. Chen, ”Surface treatment of particles by using fluidized bed technology”, Journal of the Chinese Institute of Chemical Engineers, Vol. 26, pp. 263-267 (1995).
    51. 魏飛,羅國華,王垚,李志飛,汪展文,騫傳忠,金涌,China Patent 01118349.7 (2001).
    52. Y. Wang, F. Wei, G. Luo, H. Yu and G. Gu, “The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor”, Chemical Physics Letters, Vol. 16, pp. 568-572 (2002).
    53. H. Yu, Q. F. Zhang, F. Wei, W. Qian and G. Luo, “Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism”, Carbon, Vol. 41, pp. 2855-2863 (2003).
    54. A. Weidenkaff, S.G. Ebbinghaus, Ph. Mauron, A. Reller, Y. Zhang and A. Züttel, “Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources”, Materials Science and Engineering C, Vol. 19, pp. 119-123 (2002).
    55. Y. Wang, F. Wei, G. Gu and H. Yu, “Agglomerated carbon nanotubes and its mass production in a fluidized-bed”, Physica B, Vol. 323, pp. 327-329 (2002).
    56. P. Mauron, C. Emmenegger, P. Sudan, P. Wenger, S. Rentsch and A. Züttel, “Fluidised-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO”, Diamond and Related Materials, Vol. 12, pp. 780-785 (2003).
    57. L. Ci, B. Wei, J. Liang, C. Xu and D. Wu, “Preparation of carbon nanotubules by the floating catalyst method”, Journal of Materials Science Letters, Vol. 18, pp. 797-799 (1999).
    58. W. Qian, F. Wei, Z. Wang, T. Liu, H. Yu, G. Luo and L. Xiang, ” Production of carbon nanotubes in a packed bed and a fluidized bed”, American Institute Chemical Engineers Journal, Vol. 49, pp. 619-625 (2003).
    59. W. Qian, T. Liu, Z. Wang, F. Wei, Z. Li, G. Luo and Y. Li, ”Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor”, Applied Catalysis A: General, Vol. 260, pp. 223-228 (2004).
    60. Technical information, “Polycarbosilane NIPUSI”, Nippon Carbon Co., LTD.
    61. SCIENTIFIC POLYMER PRODUCTS, INC., www.scientificpolymer.com.
    62. M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus and R. Saito, ”Raman spectroscopy on one isolated carbon nanotube”, Physica B, Vol. 323, pp. 15-20 (2002a).
    63. A. Idesaki, M. Narisawa, K. Okamura, M. Sugimoto, S. Tanaka, Y. Morita, T. Seguchi and M. Itoh, ”Fine SiC fiber synthesized from organosilicon polymers: relationship between spinning temperature and melt viscosity of precursor polymers”, Journal of Materials Science, Vol. 36, pp. 5565-5569 (2001).
    64. Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura and S. Iijima, ”Multiwalled carbon nanotubes prepared by hydrogen arc”, Diamond and Related Materials, Vol. 9, pp. 847-851 (2000).
    65. 吳俊民,林惠娟,“以CVD成長奈米碳管之研究”,材料科學與工程學系碩士論文,國立義守大學,台北,台灣 (2001).
    66. P. Colombo, T. E. Paulson and C. G. Pantano, ”Synthesis of silicon carbide thin films with polycarbosilane (PCS)”, Journal of the American Ceramic Society, Vol. 80, pp. 2333-2340 (1997).
    67. M. Takeda, A. Saeki, J. I. Sakamoto, Y. Iami and H. Ichikawa, ”Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers”, Journal of the American Ceramic Society, Vol. 83, pp. 1063-1069 (2000).
    68. N. I. Maksimova, O. P. Krivoruchko, G. Mestl, V. I. Zaikovskii, A. L. Chuvilin, A. N. Salanov and E. B. Burgina, ”Catalytic synthesis of carbon nanostructures from polymer precursors”, Journal of Molecular Catalysis A:Chemical, vol. 158, pp. 301-307 (2000).
    69. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho and R. Saito, ”Raman spectroscopy on isolated single wall carbon nanotube”, Carbon, Vol. 40, pp. 2043-2061 (2002b).
    70. V. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley and P. C. Eklund, ”Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure”, Physical Review B, Vol. 59, pp. 10928-10934 (1999).
    71. X. Zhao and Y. Ando, ”Raman spectra and X-ray diffraction patterns of carbon nanotubes prepared by hydrogen arc discharge”, Japanese Journal of Applied Physics, Vol. 37, pp. 4846-4849 (1998).
    72. H. Jantoljak, J. P. Salvetat, L. Forro and C. Thomsen, ”Low-energy Raman-active phonons of multiwalled carbon nanotubes”, Applied Physics A, Vol. 67, pp. 113-116 (1998).
    73. Y. Ando, X. Zhao, H. Shimoyama, G. Sakai and K. Kaneto, ”Physical properties of multiwalled carbon nanotube”, Journal of Inorganic Mater, Vol. 1, pp. 77-81 (1999).
    74. S. Seelan, D. W. Hwang, L. P. Hwang and A. K. Sinha, ”Synthesis of multiwalled carbon nanotubes by high-temperature vacuum annealing of amorphous carbon”, Vacuum, Vol. 75, pp. 105-109 (2004).
    75. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Campbell and F. Rohmund, ”Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films”, Applied Physics A, Vol. 73, pp. 409-418 (2001).
    76. S. K. Doorn, L. Zheng, M. J. O’Connell, Y. Zhu, S. Huang and J. Liu, ”Raman spectroscopy and imaging of ultralong carbon nanotubes”, Journal of Physical Chemistry B, Vol. 109, pp. 3751-3758 (2005).
    77. A. C. Dillon, P. A. Parilla, J. L. Alleman, T. Gennett, K. M. Jones and M. J. Heben, ”Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band”, Chemical Physics Letters, Vol. 401, pp. 522-528 (2005).

    QR CODE