簡易檢索 / 詳目顯示

研究生: 魏弘堯
Hung-yao Wei
論文名稱: 在BGA製程中以銦作為UBM層對接點界面形態與機械性質之探討
Study of the Mechanism Properties and Interfacial Reactions as Using Indium Layer for UBM in BGA
指導教授: 李嘉平
Chiapyng Lee
顏怡文
Yee-wen Yen
口試委員: 陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 182
中文關鍵詞: 球形陣列構裝底下金屬層
外文關鍵詞: indium, BGA, UBM
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應無鉛化的實行,使的傳統的錫-鉛銲料逐漸被限制,如何降低迴銲的溫度為一重要的課題。因此本研究提出一新的構想,以固液擴散的方式為基礎,以銦作為連接層形成In/Ni/Cu結構的金屬層,利用銦低溶點(157℃)的特性,在高於銦的溶點之上的溫度進行迴銲的動作。研究中以Sn-3.0Ag-0.5Cu和Sn-0.7Cu兩種銲料的760 μm的錫球為主,在160、180及200℃下進行3、4及5分鐘的迴銲,並於100℃下進行100∼500小時的時效。
    結果顯示在160、180及200℃的溫度下,兩種銲料皆可以成功的接合。對Sn-3.0Ag-0.5Cu及Sn-0.7Cu而言在160及180℃的迴銲下,界面上形成Cu6Sn5相,大部分為剝離的狀態,而200℃的迴銲下一樣形成Cu6Sn5相但無剝離的情況發生。對於Sn-3.0Ag-0.5Cu組成的錫球,在160℃迴銲後於100℃下時效過後,其在錫球的內部發現AgIn2及Ag2In相共存的情況。Sn-3.0Ag-0.5Cu及Sn-0.7Cu兩種銲料在160℃迴銲後於100℃的時效下皆發現Ni-In-Sn的三元相生成,且其厚度在100小時後即已成長至約7 μm。而在200℃迴銲後經100℃的時效下,Sn-3.0Ag-0.5Cu及Sn-0.7Cu界面上皆僅有Cu6Sn5相的生成,且無呈現剝離的狀態。而Sn-9Zn經迴銲後在界面上並無明顯的觀察到有介金屬相的生成。
    對機械性質方面,Sn-3.0Ag-0.5Cu於160℃迴銲後再經100℃下時效,因為三元介金屬相的生成使的推力值大幅度的下降,且從斷裂面上發現,破裂的方式由延性破裂轉變成延性與脆性混合的模式。


    For the coming leadfree time, the Sn/37Pb soder, traditional solder, has been limited gradually. How to reduce the reflow-temperature is the most important issue in the leadfree-process. So this study try to use another method, Solid-Liquid Interdiffusion Bonding SLID, to bond solders and metallization layer. In experiment, In/Ni/Cu is used as under metallizatioin layer to react with three solders, Sn-3.0Ag-0.5Cu、Sn-0.7Cu and Sn-9Zn, and the reflow-temperature is chosed at 160℃、180℃ and 200℃which is just higher than the melting temperature of indium, 157℃, for 3 to 5 mins. After reflowing, samples which reflowed at 160℃ and 200℃ are chosed to age at 100℃ for 100 to 500 hours then the intermetallic compounds formd at the interface between solder and metallization layer and in the solder are investigated. And for the Sn-3.0Ag-0.5Cu solder which reflowed at 160℃ and aged at 100℃, mechanism properties are also investigated.
    Three solders all can joint with In/Ni/Cu successfully at 160℃、180℃ and 200℃. After reflowing at 160℃ and 180℃,Cu6Sn5 are found and spalled into the solder for Sn-3.0Ag-0.5Cu and Sn-0.7Cu. Instead of spalling, Cu6Sn5 do not spall and have a layed form after reflowing at 200℃. After aging at 100℃, a thicker intermetallic compound appears in not only Sn-3.0Ag-0.5Cu but also Sn-0.7Cu which were reflowed at 160℃. But samples which were reflowed at 200℃ only have Cu6Sn5 even after aging at 100℃. According to EPMA, the thicker intermetallic compound is determined as a ternary phase, Ni(In0.3Sn0.7)2. For Sn-9Zn, no intermetallic compound are found after reflowing at 160℃、180℃ and 200℃ even aging at 100℃.
    For mechanism properties, microstructure and failure model are closely related. Strength of samples, Sn-3.0Ag-0.5Cu, which were reflowed at 160℃ and aged at 100℃ decrease largely because of ternary phase formed. And the failure model changes form ductile to mix of ductile and brittle fracture.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………IV 目錄……………………………………………………………………V 圖目錄…………………………………………………………………VII 表目錄 ………………………………………………………………XV 第一章 前言…………………………………………………………1 第二章 理論基礎與文獻回故 ……………………………………3 2.1 電子構裝簡介…………………………………………………3 2.2 銲接……………………………………………………………8 2.3 無鉛銲料的發展 ………………………………………………13 2.4 擴散理論與界面反應…………………………………17 2.5 相關文獻回顧…………………………………………22 2.5.1 錫-鉛/鎳………………………………………22 2.5.2 錫-銀/鎳………………………………………25 2.5.3 錫-銀-銅/鎳……………………………………27 2.5.4 錫-銅/鎳………………………………………30 2.5.5 錫-銦/鎳………………………………………32 2.5.6 錫-鋅/鎳…………………………………………………35 第三章 實驗設備與程序…………………………………………37 3.1 錫球製備…………………………………………………37 3.2 基材製備…………………………………………………40 3.2.1電鍍鎳…………………………………………40 3.2.2 電鍍銦…………………………………………43 3.3 界面反應…………………………………………44 3.4 機械性質…………………………………………47 第四章 結果與討論………………………………………………50 4-1 Sn-3.0Ag-0.5Cu在160℃與200℃下迴銲………50 4-2 Sn-0.7Cu在160℃與200℃下迴銲………………97 4-3反應機制探討……………………………………123 4-4 Ni-In-Sn三元化合物形態………………………135 第五章 結論………………………………………………………142 參考文獻……………………………………………………………144 附錄一………………………………………………………………i 附錄二………………………………………………………………iv 附錄三………………………………………………………………xii

    1.田民波、顏怡文, “ 半導體電子元件構裝技術”, 五南圖書出版公司, 台北 (2005)

    2.R.R. Tummala, E.J. Rymaszewaki and A.G. Klopfenstein,
    “Microelectronics Packaging Handbook”, Chapman & Hall, New York (1997)

    3.陳信文、陳立軒、林永森、陳志銘, “電子構裝技術與材料”, 高立圖書有限公司,
    台 北 (2005)

    4.P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Future”,
    Welding Journal , pp. 45-49 (1997).

    5.B. Trumble , “Get the Lead out”, IEEE Spectrum, Vol. 35, pp. 55-60 (1998).

    6.P. T. Vianco and D. R. Frear , “Issues in the Replacement of. Lead-Bearing
    Solders”, Journal of Materials , Vol. 45, pp. 14-19 (1993).

    7.E. P. Eood and K. L. Nimmo, “ In Search of New Lead-Lead Electronic
    Solder”, Journal of Electronic Materials, Vol. 23, pp. 709-713 (1997)

    8.M. D. Settle and C. C. Patterson, “Lead in Albacore: Guide to Lead
    Pollution in Humans”, Science, Vol. 207, pp. 1167-1176 (1980).

    9.D. R. smith and A. R. Flegal, “Lead in the biosphere-recent trends”,
    AMBIO, Vol. 24, pp. 21-23 (1995).

    10.M. M. Comack and S. Jin, “Improved Mechanical Properties in New Pb-Free
    Solder Alloys”, Journal of Electronic Materials, Vol. 23, pp. 715-720
    (1994)

    11.D. R. smith and A. R. Flegal , “Lead levels in preindustrial humans”, The
    New England Journal of Medicine, Vol. 326, pp. 1293-1294 (1992).

    12.P. Zarrow, Circuits Assembly, August, p18 (1999).

    13.張書豪,“錫-銀-銅合金與金基材界面反應之研究”,國立台灣科技大學化學工程系,
    碩士論文,民國94年

    14.D. A. Porter, K. E. Easterling, “Phase Transformations in Metals and
    Alloys”, Annual Review of Materials Science, August 1973, Vol. 3, pp. 327-
    362 (2000)

    15.R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd
    edition, PES. Boston

    16.C. S. Sheng, J. E. Duh, Y. M. Chen and J. H. Wang “Effect of Ni thickness
    and Reflow times on Interfical Reactions between Ni/Cu Under-Bump
    Metallizatioh and Eutectic Sn-Pb Solder in Flip-Chip Technology”Journal of
    Electronic Materials, Vol. 32, pp. 89-94 (2003)

    17.C. S. Huang, G. Y. Jang and J. G. Duh, ”Soldering-Induced Cu Diffusion and
    Intermetallic Compound Formation between Ni/Cu Under Bump Metallization and
    SnPb Flip-Chip Solder Bumps”, Journal of Electronic Materials, Vol. 33,
    pp. 283-289 (2004)

    18.C. H. Zhong, S. Yi, Y. C. Mui, C. P. Howe, D. Olsen and W. T. Chen, ”
    Missing Solder Ball Failure Mechanisms in Plastic Ball Grid Array
    Packages”, Electronic Components and Technology Conference, pp. 151-159
    (2000)

    19.Y. L. Lin, W. C. Luo, C. E. Ho and C. R. Kao, ”Effect of the Gold
    Thickness of the Surface Finish on the Interfical Reaction in Flip-Chip
    Solder Joint”, Journal of Electronic Materials, Vol. 33, pp. 1092-1097
    (2004)

    20.C.E. Ho, R. Zheng, G. L. Luo, A. H. Lin and C. R. Kao, ”Formation and
    Resettlement of (AuxNi1-x)Sn4 in Solder Joints of Ball-Grid-Array Packages
    with the Au/Ni Surface Finish”, Journal of Electronic Materials, Vol. 29,
    pp. 1175-1181 (2000)

    21.C. J. Chen and K. L. Lin, “The Reaction between Electroless Ni-Cu-P
    Deposit and 63Sn-37Pb Flip Chip Solder Bumps dirung Reflow”, Journal of
    Electronic Materials, Vol. 29,pp. 1007-1014 (2000)

    22.A. M. Minor, J. W. Morris, Jr., “Inhibiting Growth of the Au0.5Ni0.5Sn4
    Intermetallic Layer in Pb-Sn Solder Joints Reflowed on Au/Ni
    Metallization”, Journal of Electronic Materials, Vol. 29, pp. 1170-1174
    (2000)

    23.M.L. Huang and L. Wang, ”Effects of Cu,Bi,and In on
    Microstructure and Tensile Properties of Sn-Ag-X(Cu, Bi, In)Solder”,
    Metallurgical and Materials Transactions A, Vol. 36A, pp.1439-1446 (2005)

    24.J. Y. Park, C. W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung and
    C.S. Kang, “Investigation of Interfacial Reaction Between Sn-Ag Eutectic
    Solder and Au/Ni/Ti Thin Film Metallization”, Journal of Electronic
    Materials, Vol. 30, pp. 1165-1170 (2001)

    25.M. O. Alam, Y. C. Chan, K. N. Tu and J. K. Kivilahri, “Effect of 0.5 wt.%
    Cu in Sn-3.5 % Ag solder Balls on the Solid state Interfacial Reaction with
    Au/Ni/Cu Bond Pads for Ball Grid Array (BGA) Application”, Chemistry of
    Materials, Vol. 17, pp.2223-2226 (2005)

    26.C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration
    on the Reaction between Sn-Ag-Cu Solders and Ni”, Journal of Electronic
    Materials, Vol. 31, pp.584-590 (2002)

    27.H. F. Hsu and S. W. Chen, “Phase equilibria of the Sn-Ag-Ni ternary system
    and interfacial reaction at the Sn-Ag/ni Joints”, Acta Materialia, Vol. 52,
    pp. 2542-2547 (2004)

    28.C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao and D. S. Jlang, “Effects of
    Limited Cu Supply on Soldering Reactions Between SnAgCu and Ni”, journal
    of Electronic Materials, Vol. 35, pp. 1017-1024 (2006)

    29.S. Ishikawa, E. Hashino, T. Kono and K. Tatsumi, “IMC Growth of Solid
    State Reaction between Ni UBM and Sn-3Ag-0.5Cu and Sn-3.5Ag Solder Bump
    Using Ball Place Bumping Method During Aging”, Materials Transactions,
    Vol. 46, pp. 2351-2358 (2005)

    30.A. Zribi, A. Clark, L. Zavalij, P. Borgesen and E. J. Cotts, “The Groeth
    of Intermetallic Compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu Solder/Ni and
    the Associated Evolution of the Solder Microstructure”, Journal of
    Electronic Materials, Vol. 30, pp. 1157-1164 (2001)

    31.L. Y. Hsiao, S. T. Kao and J. G. Duh, “Characterizing Metallurgical
    Reaction of Sn3.0Ag0.5Cu Composite solder solder by Mechanical Alloying
    with Electroless Ni-P/Cu Under-Bump Metallization after Various Reflow
    Cycles”, Journal of Electronic Materials, Vol. 35, pp. 81-88 (2006)

    32.T. H. Chuang, S. F. Yen and M. D. Cheng, “Intermetallic Reaction in
    Sn3.0Ag0.5Cu and Sn3.0Ah0.5Cu0.06Ni0.01ge Solder BGA Packages with Au/Ni
    Surface Finishes”, Journal of Electronic Materials, Vol. 35, pp. 302-309
    (2006)

    33.K. Y. Lee, M. Li, D. R. Olsen and W. T. Chen “Microstructure,Joint
    strength and Faliure Mechanism of Sn-Ag,Sn-Ag-Cu versus Sn-Ag-Pb solder in
    BGA Packages”, Electronic Components and Technology Coference, pp. 478-485
    (2001)

    34.S. J. Wang, H. J. KAO and C. Y. LIU, ”Correlection between Interfacial
    Reactions and Mechanical Strengths of Sn(Cu)”, Journal of elcectronic
    material, Vol. 33, pp.1130-1136 (2004)

    35.S. C. Hsu, S. J. Wang and C. Y. Liu, ”Effect of Cu Content on Interfacil
    Reaction between Sn(Cu) Alloys and Ni/Ti Thin Film Metallization”, Journal
    of electronic Materials, Vol. 32, pp. 1214-1221 (2003)

    36.J. W. Yoon, S. W. Kim and S. B. Jung, “Interfacial reaction and Mechanical
    Properties of Eutectic Sn-0.7Cu/Ni BGA Solder Joints during Isothermal Long-
    term Aging”, Journal of Alloys and Compounds, Vol. 391, pp. 82-89 (2005)

    37.J. W. Yoon, S. W. Kim and S. B. Jung, “Effect of Reflow Time on
    Interfacial Reaction and Shear Strength of Sn-0.7Cu Solder/Cu and
    Electroless Ni-p BGA Joints”, Journal of Alloys and Compounds, Vol. 385,
    pp. 192-198 (2004)

    38.王朝弘, 陳信文, “Sn-0.7 wt.% Cu 在250℃之界面反應”, 2005年材料年會, 台

    39.H. M. Wu, F. C. Wu and T. H. Chuang, “Intermetallic Reaction in a Sn-20In-
    2.8Ag Solder Ball-Grid-Array Package with Au/Ni/Cu Pads”, Journal of
    Electronic Materials, Vol. 34, pp. 1385-1390 (2005)

    40.S. S. Wang, Y. H. Tseng and T. H. Chuang, “Intermetallic Compounds Formed
    during the Interfacial Reactions between Liquid In-49Sn Solder and Ni
    Substrate”, Journal of Electronic Materials, Vol. 35, pp. 165-169 (2006)

    41.J. M. Koo and S. B. Jung, “Reliability of In-48Sn Solder/AuNi/Cu BGA
    Package During Reflow Process”, Journal of Electronic Materials, Vol. 34,
    pp.1565-1572 (2005)

    42.C. Y. Huang and S. W. Chen, “Interfacial Reactions in In-Sn/Ni Couples and
    Phase Equilibria of the In-Sn-Ni System”, Journal of Electronic Materials,
    Vol. 31, pp. 152-160 (2002)

    43.Y. H. Tseng, M. S. Yeh and T. H. Chuang, ”Interfacial Reaction between
    Liquid Indium and Nickel Substrate”, Journal of Electronic Materials,Vol.
    28, pp.105-108 (1999)

    44.S. E. Chen, S. K. Lin and C. F. Yang, ”Lead-Free Composite Solder with an
    Indium Layer”, 2004年材料年會, 新竹

    45.L. Bernstein and H. Bartholomew, “Application of Solid-Iquid
    Interfiffusion (SLID) Bonding in Integrated0circuit Fabrication”,
    Transactions of the Metallurgical Society of Aime, Vol. 236, pp. 405-412
    (1966)

    46.F. S. Shieu, C. F. Chen, J. G. Sheen and Z. C. Chang, ”Intermetallic Phase
    Formation and Shear Strength of a Au-In Microjoint”, thin solid film, Vol.
    346, pp.125-129 (1999)

    47.J. C. Lin, L. W. Huang, G. Y. Jang and S. L. Lee, “Solid-Liquid
    interdiffusion bonding between In-coated Silver Thick Films”, Thin Solid
    Films, Vol. 410, pp. 212-221 (2002)

    48.W. D. Macdonald and T. W. Eagar, “Transient Liquid Phase Bonding
    Process”, Annual Review of Materials Science, Vol. 22, pp. 93-100 (1992)

    49.R. W. Chuang and C. C. Lee, “High-temperature Non-eutectic Indium-Tin
    Joints Fabrication by a Fluxless Process”, Thin Solid Films, Vol. 414, pp.
    175-179 (2002)

    50.周沁怡, 陳信文,“錫-鋅-銅無鉛銲料與銅、鎳之界面反應”,2005年材料年會,台

    51.R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan and W. Jillek, “Investigations on Microhardness of Sn-Zn Based Lead-Free Solder Alloys as
    Replacement of Sn-Pb Solder”, Journal of Alloys and Compounds, Vol. 392,
    pp. 149-158 (2005)

    52.Y. C. Liu, W. H. Lin, H. J. Lin and T. H. Chuang, “Intermetallic Reaction
    in Sn-8Zn-20In Solder Ball Grid Array Packages with Au/Ni/Cu and Ag/Cu
    Pad”, Journal of Electronic Materials, Vol. 35, pp. 147-153 (2006)

    53.H. J. Lin and T. H. Chuang, “Intermetallic Reactions in Reflowed and Aged
    Sn-9Zn Solder Ball Grid Array Packages with Au/Ni/Cu and Ag/Cu Pads”,
    Journal of Electronic Materials, Vol. 35, pp. 154-164 (2006)

    54.O. Cakir and O. Alpaut, Binary Alloy Phase Diagrams 2nd Edition, ed. by T.
    B Massalski and H. Okamoto, ASM International Materials Park, Ohio, pp.
    2296 (1990)

    55.V. Franetovic, D. Kunstelj and A. Bonefalic, Binary Alloy Phase Diagrams
    2nd Edition, ed. by T. B Massalski and H. Okamoto, ASM International
    Materials Park, Ohio, pp. 48 (1990)

    56.X. Zhou, J. Jin, Y. Ning and Z. Zhao, Binary Alloy Phase Diagrams 2nd
    Edition, ed. by T. B Massalski and H. Okamoto, ASM International Materials
    Park, Ohio, pp. 95 (1990)

    57.T. Heumann and Z. Metallkd, Binary Alloy Phase Diagrams 2nd
    Edition, ed. by T. B Massalski and H. Okamoto, ASM International Materials
    Park, Ohio, pp. 2864 (1990)

    58.Y. Murakami, S. Kachi and N. Nakanishi, Binary Alloy Phase Diagrams 2nd
    Edition, ed. by T. B Massalski and H. Okamoto, ASM International Materials
    Park, Ohio, pp. 2888 (1990)

    59.BGA Ball Shear, JESD22-B117, Jedc Solid State Technology Association.

    60.黃貴偉, “錫銦銀無鉛銲錫與銅及鎳基板之界面反應研究”,國立台灣大學材料科學
    與工程研究所,碩士論文,民國九十年

    61.黃清育,“銦-錫-鎳三元系統相平衡與銦-錫/鎳反應偶之界面反應”,國立清華大學化
    學工程系,碩士論文,民國九十年

    62.黃于恬,“電子構裝In49Sn無鉛銲錫與銀厚膜及銀基板之界面反應研究”,國立台灣大
    學材料科學與工程研究所,碩士論文,民國九十年

    63.I. Ohnuma, Y. Cui, X. J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R.
    Kainuma and K. Ishida, “Phase Equilibria of Sn-In Based Micro-Soldering
    Alloys”, Journal od Electronic Materials, Vol. 29, pp. 1113-1121 (2000)

    64.N. Saunders and A. P. Miodownik, Binary Alloy Phase Diagrams 2nd Edition,
    ed. by T. B Massalski and H. Okamoto, ASM International Materials Park,
    Ohio, pp. 278 (1990)

    QR CODE