簡易檢索 / 詳目顯示

研究生: 蕭憲明
Hsien-Ming Hsiao
論文名稱: 以相圖計算(CALPHAD)方法預測銀-鋁-銅-鋯四元合金系統之金屬玻璃形成區域
Prediction of the Metallic Glass Formation Regions for the Ag-Al-Cu-Zr Quaternary System by the Calculation of Phase Diagram (CALPHAD) Method
指導教授: 顏怡文
Yee-wen Yen
口試委員: 周振嘉
Chen-Chia Chou
陳信文
Sinn-wen Chen
高振宏
C. Robert Kao
林士剛
Shih-kang Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 359
中文關鍵詞: 塊材金屬玻璃(BMG)金屬玻璃區域Ag-Al- Cu-Zr四元合金非結晶區域相圖
外文關鍵詞: bulk metallic glass (BMG), Ag-Al-Cu-Zr quaternary alloy, phase diagram of the amorphous region
相關次數: 點閱:283下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃具有優異的機械性質,各方面之應用深具潛力,然國內對金屬玻璃之基礎研究卻十分的欠缺,主要集中在多元金屬玻璃合金之機械性質探討等應用面,特別在金屬玻璃區域判定,更是乏人問津。本研究以熱力學計算方式(CALPHAD),將相圖之計算原理應用在金屬玻璃形成區域之預測,首先建構該系統正確合理之熱力學資料庫,確認該熱力學資料庫符合實驗數據等各種物理性質(如相平衡圖、生成焓或活度等),再利用metastable相圖概念預測金屬玻璃形成區域。因Cu基合金成本較低且Cu基與Zr基皆具有不錯的玻璃形成能力與寬廣之過冷液相區,對於工業應用具有利用價值,因此本研究探討Ag-Al-Cu-Zr四元合金系統及其所屬三元系統之金屬玻璃形成區,盼對學術界有所貢獻,再者,透過熱力學參數計算,預測出可能形成金屬玻璃之合金組成成分,再依據此組成成分進行合金配製及實驗確認,而不必配製整個系統之所有組成,可以大大節省人力物力,縮短該系統之金屬玻璃研究,對於工業界之應用也是一大利基。


    Bulk metallic glasses (BMGs) have excellent potentials for various applications due to their excellent mechanical properties. But the fundamental investigations of metallic glasses are scarce in Taiwan, most of which are focusing on mechanical tests. The determination of metallic glass formation region was not studied ever. Therefore, the main purpose of this study focuses on the prediction of formation of metallic glasses by means of thermodynamic calculation, which is commonly used in the CALPHAD field. First of all, it is necessary to establish a reasonably correct thermodynamic dataset, which is consistant with experimental reusutls, such as phase equilibria, enthalpy of formation or activities of liquid or solid. Then the related metastable phase diagrams of binary or ternary systems could be introduced and drawn to predict formation of metallic glasses regions. The Cu-based alloys are inexpersive, and Zr- and Cu-based alloys have promising ability to form amorphous metallic glasses due to their wide range of the supercooled liquid region. Those alloys are favorable for application in industries. In this study, the Ag-Al-Cu-Zr quaternary and subternary systems are investigated thermodynamically to determine the formation of metallic glasses regions. Furthermore, once formation compositions of metallic glasses were predicted correctly, only few alloy samples were needed to be verified experimentally. Thus the expense and time of metallic glasses research woul be largly eliminated. Also the application of metallic glasses would be promoted and accepted in industries.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 附 圖 目 錄 VI 附 表 目 錄 XIX 1、前言 1 2、金屬玻璃特性與應用 2 2.1無序排列 2 2.2 玻璃轉移溫度Tg 5 2.3 機械、磁與抗腐蝕特性 9 2.4 塊材非晶質合金(bulk metallic glass, BMG) 9 2.5 金屬玻璃之應用與尺寸限制 13 3、金屬玻璃形成之預測方法與熱力學計算原理 21 3.1相平衡圖(二元及三元系統) 21 3.1.1 二元系統相圖 22 3.1.2 三元系統相圖之簡介 42 3.2 相圖測定之實驗方法 49 3.2.1 Thermodynamic data 49 3.2.2 相圖實驗方法 50 3.3 CALPHAD方法 61 3.4 熱力學模型(Thermodynamic modeling) 63 3.4.1 Unary 63 3.4.2 Solution phases (Redlich-Kister equation) 68 3.4.3 Stoichiometric compounds 70 3.5 相圖計算範例 72 3.5.1 Relations between phase diagram (Cu-Ni system) and Gibbs energy 73 3.5.2 Parameters effect (Cu-Ni system) 75 3.5.3 T0 curve (Cu-Ni system) 80 3.5.4 Miscibility gap and Spinodal curve (Cu-Ni & Fe-Cr system) 81 3.5.5 Driving force 85 3.6 金屬玻璃形成之經驗/熱力學預測方法 95 3.6.1 Inoue經驗法則(Empirical rules) 96 3.6.2 Reduced glass transition temperature, Trg( = Tg/Tl = Tg/Tm) 99 3.6.3 Critical cooling rate Rc & TTT diagram 99 3.6.4 Supercooled liquid region, ΔTx ( = Tx-Tg) 102 3.6.5 γ (= Tx/(Tl+Tg) 103 3.6.6 Other parameters 104 3.6.7 Thermodynamic methods 106 4、研究方法 121 5、結果與討論 126 5.1 Ag-Cu-Zr三元系統 126 5.1.1 Ag-Zr二元系統 126 5.1.2 Cu-Zr二元系統 152 5.1.3 Ag-Cu二元系統 185 5.1.4 Ag-Cu-Zr三元系統相平衡(實驗與優化) 194 5.1.5 Ag-Cu-Zr金屬玻璃預測 207 5.2 Ag-Al-Zr三元系統 220 5.2.1 Al-Zr二元系統 220 5.2.2 Ag-Al二元系統 240 5.2.3 Ag-Al-Zr三元系統相平衡(實驗與優化) 254 5.2.4 Ag-Al-Zr金屬玻璃預測 257 5.3 Al-Cu-Zr三元系統 259 5.3.1 Al-Cu二元系統 259 5.3.2 Al-Cu-Zr三元系統相平衡(實驗與優化) 271 5.3.3 Al-Cu-Zr金屬玻璃預測 275 5.4 Ag-Al-Cu三元系統 281 5.4.1 Ag-Al-Cu三元系統相平衡(實驗與優化) 281 5.5 Ag-Al-Cu-Zr四元系統 291 5.5.1 Ag-Al-Cu-Zr四元系統相平衡(實驗與優化) 292 5.5.2 Ag-Al-Cu-Zr金屬玻璃預測 292 6、結論 295 附錄 297 參考文獻 344

    [1]. 邱垂泓 and 吳學陞, 非晶質金屬材料簡介. 工業材料雜誌, 2014. 325: p. 137-148.
    [2]. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Materialia, 2001. 49(14): p. 2645-2652.
    [3]. Zachariasen, W.H., The atomic arrangement in glass. Journal of the American Chemical Society, 1932. 54(10): p. 3841-3851.
    [4]. Ediger, M.D., Angell, C.A., and Nagel, S.R., Supercooled Liquids and Glasses. The Journal of Physical Chemistry, 1996. 100(31): p. 13200-13212.
    [5]. Scherer, G.W., Glass formation and relaxation, in Glasses and amorphous materials, Zarzycki, J., Editor. 1991, VCH: Weinheim, New York, Basel, Cambridge. p. 121-173.
    [6]. Chen, H.S. and Turnbull, D., Evidence of a Glass–Liquid Transition in a Gold–Germanium–Silicon Alloy. The Journal of Chemical Physics, 1968. 48(6): p. 2560-2571.
    [7]. Málek, J. and Shánělová, J., Crystallization kinetics in amorphous and glassy materials, in Thermal analysis of Micro, Nano- and Non-Crystalline Materials, Šesták, J. and Šimon, P., Editors. 2013, Springer Netherlands. p. 291-324.
    [8]. Cahn, R.W., Metallic glasses, in Glasses and amorphous materials, Zarzycki, J., Editor. 1991, VCH: Weinheim, New York, Basel, Cambridge. p. 493-548.
    [9]. 薛承輝, 金屬玻璃之發展與應用. 臺大校友雙月刊, 2015. 98: p. 8-11.
    [10]. Chu, J.P., Chiang, C.L., Nieh, T.G., and Kawamura, Y., Superplasticity in a bulk amorphous Pd-40Ni-20P alloy:a compression study. Intermetallics, 2002. 10(11–12): p. 1191-1195.
    [11]. Kumar, G., Desai, A., and Schroers, J., Bulk metallic glass: the smaller the better. Adv Mater, 2011. 23(4): p. 461-76.
    [12]. Johnson, W.L., Bulk amorphous metal-An emerging engineering material. JOM, 2002. 54(3): p. 40-43.
    [13]. Inoue, A., Bulk amorphous alloys with soft and hard magnetic properties. Materials Science and Engineering: A, 1997. 226–228(0): p. 357-363.
    [14]. Zhang, C., Li, N., Pan, J., Guo, S.F., Zhang, M., and Liu, L., Enhancement of glass-forming ability and bio-corrosion resistance of Zr–Co–Al bulk metallic glasses by the addition of Ag. Journal of Alloys and Compounds, 2010. 504, Supplement 1(0): p. S163-S167.
    [15]. Xing, L.Q. and Ochin, P., Investigation of the effects of Al and Ti on the glass forming ability of Zr-Cu-Al and Zr-Ti-Al-Cu-Ni alloys through their solidification characteristics. Acta Materialia, 1997. 45(9): p. 3765-3774.
    [16]. Xing, L.Q., Ochin, P., and Bigot, J., Effects of Al on the glass-forming ability of Zr-Cu based alloys. Journal of Non-Crystalline Solids, 1996. 205–207, Part 2(0): p. 637-640.
    [17]. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
    [18]. Cheung, T.L. and Shek, C.H., Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434–435(0): p. 71-74.
    [19]. Ma, W.J., Wang, Y.R., Wei, B.C., and Sun, Y.F., Microstructure and mechanical properties of Zr-Cu-Al bulk metallic glasses. Transactions of Nonferrous Metals Society of China, 2007. 17(5): p. 929-933.
    [20]. Kwon, O.J., Lee, Y.K., Park, S.O., Lee, J.C., Kim, Y.C., and Fleury, E., Thermal and mechanical behaviors of Cu–Zr amorphous alloys. Materials Science and Engineering: A, 2007. 449–451(0): p. 169-171.
    [21]. Yokoyama, Y., Yamasaki, T., Liaw, P.K., Buchanan, R.A., and Inoue, A., Glass-structure changes in tilt-cast Zr–Cu–Al glassy alloys. Materials Science and Engineering: A, 2007. 449–451(0): p. 621-626.
    [22]. Inoue, A. and Zhang, W., Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Materials Transactions, 2002. 43(11): p. 2921-2925.
    [23]. Yu, P., Bai, H.Y., Tang, M.B., and Wang, W.L., Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids, 2005. 351(14–15): p. 1328-1332.
    [24]. Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C., Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Materialia, 2004. 52(9): p. 2621-2624.
    [25]. Kim, Y.C., Lee, J.C., Cha, P.R., Ahn, J.P., and Fleury, E., Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses. Materials Science and Engineering: A, 2006. 437(2): p. 248-253.
    [26]. Buschow, K.H.J., Thermal stability of amorphous Zr‐Cu alloys. Journal of Applied Physics, 1981. 52(5): p. 3319-3323.
    [27]. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys. Materials Transactions, 2001. 42(6): p. 1149-1151.
    [28]. Inoue, A., Takeuchi, A., and Zhang, T., Ferromagnetic bulk amorphous alloys. Metallurgical and Materials Transactions A, 1998. 29(7): p. 1779-1793.
    [29]. Chen, Q.J., Shen, J., Fan, H.B., Sun, J.F., Huang, Y.J., and McCartney, D.G., Glass-Forming Ability of an Iron-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion. Chinese Physics Letters, 2005. 22(7): p. 1736.
    [30]. 田弘宇, 鐵基與鎳基非晶塊狀材料之開發, 碩士, 2005, 材料科學工程學系, 國立清華大學, 新竹市.
    [31]. Xu, D.H., Duan, G., Johnson, W.L., and Garland, C., Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Materialia, 2004. 52(12): p. 3493-3497.
    [32]. Choi-Yim, H., Xu, D.H., Lind, M.L., Löffler, J.F., and Johnson, W.L., Structure and mechanical properties of bulk glass-forming Ni–Nb–Sn alloys. Scripta Materialia, 2006. 54(2): p. 187-190.
    [33]. Na, J.H., Kim, W.T., Kim, D.H., and Yi, S., Bulk metallic glass formation in Ni–Zr–Nb–Al alloy systems. Materials Letters, 2004. 58(5): p. 778-782.
    [34]. Park, T.G., Yi, S., and Kim, D.H., Development of new Ni-based amorphous alloys containing no metalloid that have large undercooled liquid regions. Scripta Materialia, 2000. 43(2): p. 109-114.
    [35]. Inoue, A., Zhang, T., and Masumoto, T., Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties. Materials Transactions, JIM, 1995. 36(3): p. 391-398.
    [36]. Inoue, A., Shinohara, Y., Yokoyama, Y., and Masumoto, T., Solidification Analyses of Bulky Zr60Al10Ni10Cu15Pd5 Glass Produced by Casting into Wedge-Shape Copper Mold. Materials Transactions, JIM, 1995. 36(10): p. 1276-1281.
    [37]. Inoue, A., Bulk amorphous alloys : preparation and fundamental characteristics. Materials science foundations. 1998, Zurich, Swiss: Trans Tech Publications. 116.
    [38]. Nishiyama, N. and Inoue, A., Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy. Materials Transactions, JIM, 1996. 37(10): p. 1531-1539.
    [39]. 葉銘騏, 以水冷銅模鑄造銅基塊狀非晶質合金與血液相容性評估, 碩士, 2006, 機械與精密工程研究所, 國立高雄應用科技大學, 高雄市.
    [40]. Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1992. 33(10): p. 937-945.
    [41]. Inoue, A., Nakamura, T., Sugita, T., Zhang, T., and Masumoto, T., Bulky La-Al-TM (TM=transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1993. 34(4): p. 351-358.
    [42]. Li, B., Nordstrom, N., and Lavernia, E.J., Spray forming of Zircaloy-4. Materials Science and Engineering: A, 1997. 237(2): p. 207-215.
    [43]. Grant, P.S., Spray forming. Progress in Materials Science, 1995. 39(4–5): p. 497-545.
    [44]. 惠希东 and 陈国良, 块体非晶合金. 2007: 化学工业出版社.
    [45]. ; Available from: http://liquidmetal.com/properties/properties/.
    [46]. Onuki, M., Inoue, A., Yamaguchi, T., Minamiguchi, H., and Iwata, K., Production of Zr-based bulk glassy alloys witn high strength and high toughness and their applications to golf clubs. Materia Japan, 1999. 38(3): p. 251-253.
    [47]. 液態金屬(Liquidmetal). Available from: http://lazybone1960.pixnet.net/blog/post/26661703-%E6%B6%B2%E6%85%8B%E9%87%91%E5%B1%AC%28liquidmetal%29.
    [48]. Miracle, D.B., Metallic glasses: Fast track to production. Nat Mater, 2014. 13(5): p. 432-433.
    [49]. 《散熱膏也用Liquidmetal》新一代應用材料,液態金屬. Available from: http://www.pcdiy.com.tw/webroot/article.php?art=505.
    [50]. Kumar, G., Tang, H.X., and Schroers, J., Nanomoulding with amorphous metals. Nature, 2009. 457(7231): p. 868-872.
    [51]. Maruyama, M. Japanese universities develop Ti-based metallic glass for artificial finger joint. 2009; Available from: http://techon.nikkeibp.co.jp/english/NEWS_EN/20090610/171551/?P=1.
    [52]. Brindley, L. Fixing bones with dissolvable glass. 2009; Available from: http://physicsworld.com/cws/article/news/2009/oct/01/fixing-bones-with-dissolvable-glass.
    [53]. 葉名倉. 金屬玻璃(Metallic Glass). 2013; Available from: http://highscope.ch.ntu.edu.tw/wordpress/?p=2962.
    [54]. Yuan, Z.Z., Bao, S.L., Lu, Y., Zhang, D.P., and Yao, L., A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. Journal of Alloys and Compounds, 2008. 459(1–2): p. 251-260.
    [55]. Jiang, Q.K., Wang, X.D., Nie, X.P., Zhang, G.Q., Ma, H., Fecht, H.J., Bendnarcik, J., Franz, H., Liu, Y.G., Cao, Q.P., and Jiang, J.Z., Zr–(Cu,Ag)–Al bulk metallic glasses. Acta Materialia, 2008. 56(8): p. 1785-1796.
    [56]. Peker, A. and Johnson, W.L., A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters, 1993. 63(17): p. 2342-2344.
    [57]. Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E., Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters, 2005. 87(18): p. 181915.
    [58]. Jiang, Q.K., Zhang, G.Q., Yang, L., Wang, X.D., Saksl, K., Franz, H., Wunderlich, R., Fecht, H., and Jiang, J.Z., La-based bulk metallic glasses with critical diameter up to 30mm. Acta Materialia, 2007. 55(13): p. 4409-4418.
    [59]. Xu, D.H., Duan, G., and Johnson, W.L., Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Physical Review Letters, 2004. 92(24): p. 245504-1~4.
    [60]. Yu, P., Bai, H.Y., and Wang, W.H., Superior glass-forming ability of CuZr alloys from minor additions. Journal of Materials Research, 2006. 21(07): p. 1674-1679.
    [61]. Tang, M.B., Zhao, D.Q., Pan, M.X., and Wang, W.H., Binary Cu-Zr Bulk Metallic Glasses. Chinese Physics Letters, 2004. 21(5): p. 901-903.
    [62]. Zhang, Q.S., Zhang, W., and Inoue, A., Effects of Addition of Al, Ti and Ag on Glass-Forming Ability of Cu50Zr50 Alloy. Materials Science Forum, 2007. 561-565: p. 1333-1336.
    [63]. Wang, W.H., Lewandowski, J.J., and Greer, A.L., Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research, 2005. 20(09): p. 2307-2313.
    [64]. Duan, G., Blauwe, K.D., Lind, M.L., Schramm, J.P., and Johnson, W.L., Compositional dependence of thermal, elastic, and mechanical properties in Cu–Zr–Ag bulk metallic glasses. Scripta Materialia, 2008. 58(3): p. 159-162.
    [65]. Zhang, W., Jia, F., Zhang, Q.S., and Inoue, A., Effects of additional Ag on the thermal stability and glass-forming ability of Cu–Zr binary glassy alloys. Materials Science and Engineering: A, 2007. 459(1-2): p. 330-336.
    [66]. Wang, D., Tan, H., and Li, Y., Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system – A metallographic way to pinpoint the best glass forming alloys. Acta Materialia, 2005. 53(10): p. 2969-2979.
    [67]. Xu, X., Chen, L.Y., Zhang, G.Q., Wang, L.N., and Jiang, J.Z., Formation of bulk metallic glasses in Cu45Zr48−xAl7REx (RE=La, Ce, Nd, Gd and 0<x≤5at.%). Intermetallics, 2007. 15(8): p. 1066-1070.
    [68]. Zhang, G.Q., Jiang, Q.K., Chen, L.Y., Shao, M., Liu, J.F., and Jiang, J.Z., Synthesis of centimeter-size Ag-doped Zr–Cu–Al metallic glasses with large plasticity. Journal of Alloys and Compounds, 2006. 424(1–2): p. 176-178.
    [69]. 王崇琳, 相图理论及其应用. 2008, 中國: 高等教育出版社.
    [70]. Campbell, F.C., Phase diagrams: Understanding the basics. 2012: ASM International.
    [71]. Campbell, F.C., Elements of metallurgy and engineering alloys. 2008: ASM International. 672.
    [72]. Wang, J.H., Lu, X.G., Sundman, B., and Su, X.P., Thermodynamic assessment of the Au–Ni system. Calphad, 2005. 29(4): p. 263-268.
    [73]. Pelton, A.D., Chapter 6 - Phase Diagrams, in Physical Metallurgy (Fourth Edition), Cahn, R.W. and Haasen, P., Editors. 1996, North-Holland: Oxford. p. 471-533.
    [74]. Kowalski, M. and Spencer, P.J., Thermodynamic reevaluation of the Cu-Zn system. Journal of Phase Equilibria, 1993. 14(4): p. 432-438.
    [75]. Massalski, T.B., Cu-Zn (Copper-Zinc), in Binary Alloy Phase Diagrams, Massalski, T.B., Murray, J.L., Bennett, L.H., and Baker, H., Editors. 1986.
    [76]. Askeland, D.R., Fulay, P.P., and Wright, W.J., The science and engineering of materials. 6 ed. 2010: Cengage Learning. 944.
    [77]. Baker, H., Introduction to Alloy Phase Diagrams, Phase Diagrams. 1992, ASM International.
    [78]. Witusiewicz, V.T., Hecht, U., Fries, S.G., and Rex, S., The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data. Journal of Alloys and Compounds, 2004. 385(1–2): p. 133-143.
    [79]. 蕭憲明, 金-銅-錫三元合金、銀-金-銅-錫四元合金系統相平衡及錫-銅合金與金基材的界面反應, 碩士, 2005, 化學工程系, 國立台灣科技大學, 台北市.
    [80]. Schmid-Fetzer, R., Phase Diagrams: The Beginning of Wisdom. Journal of Phase Equilibria and Diffusion, 2014. 35(6): p. 735-760.
    [81]. MSIT, Critical Evaluation of Ternary Phase Diagram Data: Best Practice Guidelines for Evaluation & Notes for Authors, Effenberg, G. and Schmid-Fetzer, R., Editors. 2012.
    [82]. Lukas, H.L., Fries, S.G., and Sundman, B., Computational thermodynamics: The Calphad method. 2007: Cambridge University Press.
    [83]. Boettinger, W.J., Kattner, U.R., Moon, K.-W., and Perepezko, J.H., DTA and heat-flux DSC measurements of alloy melting and freezing. 2006.
    [84]. Inoue, A., Zhang, T., and Masumoto, T., Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region. Materials Transactions, JIM, 1989. 30(12): p. 965-972.
    [85]. Inoue, A. and Hashimoto, K., Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications. Advances in Materials Research. 2001: Springer Berlin Heidelberg.
    [86]. Massalski, T.B., Chapter 3 - Structure and Stability of Alloys*, in Physical Metallurgy (Fourth Edition), Haasen, R.W.C., Editor. 1996, North-Holland: Oxford. p. 135-204.
    [87]. 顏怡文, 銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究, 博士, 2002, 化學工程學系, 國立清華大學, 新竹市.
    [88]. ASM Handbook Volume 3: Alloy phase diagrams. Vol. 3. 1992: ASM International.
    [89]. Zhang, F., Xu, H., Du, Y., Schmid-Fetzer, R., and Zhou, T., Phase equilibria of the Mg–La–Nd system at 500°C. Journal of Alloys and Compounds, 2014. 585(0): p. 384-392.
    [90]. Janz, A., Thermodynamics and constitution of quaternary Mg-Al-Ca-Sr alloys and the extension to the quinary Mg-Al-Ca-Sr-Mn system, Doctor, 2008, Natural and Materials Science, Clausthal University of Technology, Clausthal-Zellerfeld.
    [91]. Scheil, E., Bemerkungen zur Schichtkristallbildung. Zeitschrift für Metallkunde, 1942. 34: p. 70-72.
    [92]. Spencer, P.J., A brief history of CALPHAD. Calphad, 2008. 32(1): p. 1-8.
    [93]. Chen, S.L., Daniel, S., Zhang, F., Chang, Y.A., Oates, W.A., and Schmid-Fetzer, R., On the calculation of multicomponent stable phase diagrams. Journal of Phase Equilibria, 2001. 22(4): p. 373-378.
    [94]. Chen, S.L., Daniel, S., Zhang, F., Chang, Y.A., Yan, X.Y., Xie, F.Y., Schmid-Fetzer, R., and Oates, W.A., The PANDAT software package and its applications. Calphad, 2002. 26(2): p. 175-188.
    [95]. Chen, S.L., Zhang, F., Daniel, S., Xie, F.Y., Yan, X.Y., Chang, Y.A., Schmid-Fetzer, R., and Oates, W.A., Calculating phase diagrams using PANDAT and PanEngine. JOM, 2003. 55(12): p. 48-51.
    [96]. Chang, Y.A., Chen, S., Zhang, F., Yan, X., Xie, F., Schmid-Fetzer, R., and Oates, W.A., Phase diagram calculation: past, present and future. Progress in Materials Science, 2004. 49(3–4): p. 313-345.
    [97]. Chen, S., Cao, W., Yang, Y., Zhang, F., Wu, K., Du, Y., and Chang, Y.A., Calculation and application of liquidus projection. Rare Metals, 2006. 25(5): p. 532-537.
    [98]. Cao, W., Chen, S.L., Zhang, F., Wu, K., Yang, Y., Chang, Y.A., Schmid-Fetzer, R., and Oates, W.A., PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad, 2009. 33(2): p. 328-342.
    [99]. Kattner, U.R., The thermodynamic modeling of multicomponent phase equilibria. JOM, 1997. 49(12): p. 14-19.
    [100]. Schmid-Fetzer, R., Andersson, D., Chevalier, P.Y., Eleno, L., Fabrichnaya, O., Kattner, U.R., Sundman, B., Wang, C., Watson, A., Zabdyr, L., and Zinkevich, M., Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad, 2007. 31(1): p. 38-52.
    [101]. Dinsdale, A.T., SGTE data for pure elements. Calphad, 1991. 15(4): p. 317-425.
    [102]. Redlich, O. and Kister, A.T., Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial & Engineering Chemistry, 1948. 40(2): p. 345-348.
    [103]. Janz, A. and Schmid-Fetzer, R., Impact of ternary parameters. Calphad, 2005. 29(1): p. 37-39.
    [104]. Liu, X.J., Wang, C.P., Gao, F., Ohnuma, I., and Ishida, K., Thermodynamic Calculation of Phase Equilibria in the Sn-Ag-Cu-Ni-Au System. Journal of Electronic Materials, 2007. 36(11): p. 1429-1441.
    [105]. Kevorkov, D., Schmid-Fetzer, R., Pisch, A., Hodaj, F., and Colinet, C., The Al-Ca system, Part 2: Calorimetric measurements and Thermodynamic Assessment. Zeitschrift fuer Metallkunde, 2001. 92: p. 953-958.
    [106]. Kozlov, A., Ohno, M., Arroyave, R., Liu, Z.K., and Schmid-Fetzer, R., Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg–Sn–Ca system. Intermetallics, 2008. 16(2): p. 299-315.
    [107]. Calphad Workshop Manual, Schmid-Fetzer, R.G., Editor. 2005, Institute of Metallurgy, Clausthal University of Technology. p. 54.
    [108]. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochimica Acta, 2010. 497(1–2): p. 7-13.
    [109]. an Mey, S., Thermodynamic re-evaluation of the Cu-Ni system. Calphad, 1992. 16(3): p. 255-260.
    [110]. NIMS. NIMS Thermodynamic Database Available from: http://www.nims.go.jp/cmsc/pst/database/periodic.htm.
    [111]. Hillert, M., Phase equilibria, phase diagrams and phase transformations: Their thermodynamic basis. 2 ed. 2007.
    [112]. Hillert, M., Phase equilibria, phase diagrams and phase transformations: Their thermodynamic basis. 1998: CAMBRIDGE UNIVERSITY PRESS.
    [113]. Andersson, J.O. and Sundman, B., Thermodynamic properties of the Cr-Fe system. Calphad, 1987. 11(1): p. 83-92.
    [114]. Kim, D., Lee, B.J., and Kim, N.J., Thermodynamic approach for predicting the glass forming ability of amorphous alloys. Intermetallics, 2004. 12(10–11): p. 1103-1107.
    [115]. Kim, D., Lee, B.-J., and Kim, N.J., Prediction of composition dependency of glass forming ability of Mg–Cu–Y alloys by thermodynamic approach. Scripta Materialia, 2005. 52(10): p. 969-972.
    [116]. Tang, C.Y., Du, Y., Wang, J., Zhou, H.Y., Zhang, L.J., Zheng, F., Lee, J.H., and Yao, Q.R., Correlation between thermodynamics and glass forming ability in the Al–Ce–Ni system. Intermetallics, 2010. 18(5): p. 900-906.
    [117]. 章立鋼, Al-Cu-RE合金相圖及其微觀組織演化研究, 博士, 2010, 中南大學, 中國.
    [118]. Abe, T., Shimono, M., Ode, M., and Onodera, H., Thermodynamic modeling of the undercooled liquid in the Cu–Zr system. Acta Materialia, 2006. 54(4): p. 909-915.
    [119]. Abe, T., Shimono, M., Ode, M., and Onodera, H., Estimation of the glass forming ability of the Ni–Zr and the Cu–Zr alloys. Journal of Alloys and Compounds, 2007. 434–435(0): p. 152-155.
    [120]. Inoue, A., Shibata, T., and Zhang, T., Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys. Materials Transactions, JIM, 1995. 36(12): p. 1420-1426.
    [121]. Inoue, A., Zhang, T., and Masumoto, T., Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156–158, Part 2(0): p. 473-480.
    [122]. Inoue, A., High strength bulk amorphous alloys with low critical cooling rates. Materials Transactions, JIM, 1995. 36(7): p. 866-875.
    [123]. Uhlmann, D.R., Glass formation. Journal of Non-Crystalline Solids, 1977. 25(1–3): p. 42-85.
    [124]. Hume-Rothery, W. and Raynor, G.V., The structure of metals and alloys 4ed. 1962, London: Institute of Metals.
    [125]. Stiehler, M., Rauchhaupt, J., Giegengack, U., and Häussler, P., On modifications of the well-known Hume-Rothery rules: Amorphous alloys as model systems. Journal of Non-Crystalline Solids, 2007. 353(18–21): p. 1886-1891.
    [126]. Turnbull, D., Under what conditions can a glass be formed? Contemporary Physics, 1969. 10(5): p. 473-488.
    [127]. Lu, Z.P., Liu, Y., and Liu, C.T., Evaluation of glass-forming ability, in Bulk Metallic Glasses, Miller, M. and Liaw, P., Editors. 2008, Springer US. p. 87-115.
    [128]. Lu, Z.P. and Liu, C.T., A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
    [129]. Mondal, K. and Murty, B.S., On the parameters to assess the glass forming ability of liquids. Journal of Non-Crystalline Solids, 2005. 351(16–17): p. 1366-1371.
    [130]. Wang, W.H., Dong, C., and Shek, C.H., Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2–3): p. 45-89.
    [131]. Uhlmann, D.R., A kinetic treatment of glass formation. Journal of Non-Crystalline Solids, 1972. 7(4): p. 337-348.
    [132]. Lu, Z.P., Liu, Y., and Liu, C.T., Bulk metallic glasses-An overview, ed. Miller, M. and Liaw, P. 2008: Springer US. 237.
    [133]. Lu, Z.P. and Liu, C.T., A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics, 2004. 12(10–11): p. 1035-1043.
    [134]. Busch, R., The thermophysical properties of bulk metallic glass-forming liquids. JOM, 2000. 52(7): p. 39-42.
    [135]. Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., and Rhim, W.K., Experimental determination of a time-temperature‐transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique. Applied Physics Letters, 1996. 68(8): p. 1057-1059.
    [136]. Masuhr, A., Waniuk, T., Busch, R., and Johnson, W., Time scales for viscous flow, atomic transport, and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Physical Review Letters, 1999. 82(11): p. 2290-2293.
    [137]. Waniuk, T.A., Schroers, J., and Johnson, W.L., Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Applied Physics Letters, 2001. 78(9): p. 1213-1215.
    [138]. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Formation and mechanical properties of Cu–Hf–Ti bulk glassy alloys. Journal of Materials Research, 2001. 16(10): p. 2836-2844.
    [139]. Xia, M., Zhang, S., Li, J., and Ma, C., Thermal stability and its prediction of bulk metallic glass systems. Applied Physics Letters, 2006. 88(26): p. 261913-1-3.
    [140]. Lu, Z.P., Bei, H., and Liu, C.T., Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 2007. 15(5–6): p. 618-624.
    [141]. Suryanarayana, C., Seki, I., and Inoue, A., A critical analysis of the glass-forming ability of alloys. Journal of Non-Crystalline Solids, 2009. 355(6): p. 355-360.
    [142]. Du, X.H., Huang, J.C., Liu, C.T., and Lu, Z.P., New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
    [143]. Chen, Q., Shen, J., Zhang, D., Fan, H., Sun, J., and McCartney, D.G., A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Materials Science and Engineering: A, 2006. 433(1–2): p. 155-160.
    [144]. Fan, G.J., Choo, H., and Liaw, P.K., A new criterion for the glass-forming ability of liquids. Journal of Non-Crystalline Solids, 2007. 353(1): p. 102-107.
    [145]. Ji, X.L. and Pan, Y., A thermodynamic approach to assess glass-forming ability of bulk metallic glasses. Transactions of Nonferrous Metals Society of China, 2009. 19(5): p. 1271-1279.
    [146]. Long, Z., Wei, H., Ding, Y., Zhang, P., Xie, G., and Inoue, A., A new criterion for predicting the glass-forming ability of bulk metallic glasses. Journal of Alloys and Compounds, 2009. 475(1–2): p. 207-219.
    [147]. Park, E.S., Kim, D.H., and Kim, W.T., Parameter for glass forming ability of ternary alloy systems. Applied Physics Letters, 2005. 86(6): p. 061907-1-3.
    [148]. Liu, W.Y., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q., New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems. Materials Science and Engineering: A, 2007. 459(1–2): p. 196-203.
    [149]. Azad, S., Mandal, A., and Mandal, R.K., On the parameters of glass formation in metallic systems. Materials Science and Engineering: A, 2007. 458(1–2): p. 348-354.
    [150]. Vincent, S., Peshwe, D.R., Murty, B.S., and Bhatt, J., Thermodynamic prediction of bulk metallic glass forming alloys in ternary Zr–Cu–X (X=Ag, Al, Ti, Ga) systems. Journal of Non-Crystalline Solids, 2011. 357(19–20): p. 3495-3499.
    [151]. Shao, G., Prediction of amorphous phase stability in metallic alloys. Journal of Applied Physics, 2000. 88(7): p. 4443-4445.
    [152]. Yan, X.Y., Chang, Y.A., Yang, Y., Xie, F.Y., Chen, S.L., Zhang, F., Daniel, S., and He, M.H., A thermodynamic approach for predicting the tendency of multicomponent metallic alloys for glass formation. Intermetallics, 2001. 9(6): p. 535-538.
    [153]. Lin, X.H. and Johnson, W.L., Formation of Ti–Zr–Cu–Ni bulk metallic glasses. Journal of Applied Physics, 1995. 78(11): p. 6514-6519.
    [154]. Baricco, M. and Palumbo, M., Phase diagrams and glass formation in metallic systems. Advanced Engineering Materials, 2007. 9(6): p. 454-467.
    [155]. Altounian, Z., Guo‐hua, T., and Strom‐Olsen, J.O., Crystallization characteristics of Cu‐Zr metallic glasses from Cu70Zr30 to Cu25Zr75. Journal of Applied Physics, 1982. 53(7): p. 4755-4760.
    [156]. Bergman, C. and Komarek, K.L., Heat capacity of liquid alloys. Calphad, 1985. 9(1): p. 1-14.
    [157]. Boettinger, W.J. and Perepezko, J.H., eds. Rapidly Solidified Alloys: Processes, Structures, Properties, Applications. Materials Engineering, ed. Liebermann, H.H. 1993, Marcel Dekker, Inc.: New York.
    [158]. Tang, C.Y. and Zhou, H.Y., eds. Chapter3 Thermodynamics and the glass forming ability of alloys. Thermodynamics - Physical Chemistry of Aqueous Systems, ed. Moreno-Piraján, J.C. 2011, InTech.
    [159]. Palumbo, M. and Battezzati, L., Thermodynamics and kinetics of metallic amorphous phases in the framework of the CALPHAD approach. Calphad, 2008. 32(2): p. 295-314.
    [160]. Kim, Y.K., Soh, J.R., Kim, H.S., and Lee, H.M., Thermodynamic prediction of glass forming range in Al-Mg-REM ternary system. Calphad, 1998. 22(2): p. 221-230.
    [161]. Kang, D.H. and Jung, I.H., Critical thermodynamic evaluation and optimization of the Ag–Zr, Cu–Zr and Ag–Cu–Zr systems and its applications to amorphous Cu–Zr–Ag alloys. Intermetallics, 2010. 18(5): p. 815-833.
    [162]. He, X.C., Wang, H., Liu, H.S., and Jin, Z.P., Thermodynamic description of the Cu–Ag–Zr system. Calphad, 2006. 30(4): p. 367-374.
    [163]. Nagase, T. and Umakoshi, Y., Phase stability of amorphous and crystalline phases in melt-spun Zr66.7Cu33.3 alloy under electron irradiation. Scripta Materialia, 2003. 48(9): p. 1237-1242.
    [164]. Inoue, A. and Zhang, W., Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods. Materials Transactions, 2004. 45(2): p. 584-587.
    [165]. Janovszky, D., Tomolya, K., Sveda, M., Solyom, J., and Roosz, A., New bulk glassy alloys in Cu-Zr-Ag ternary system prepared by casting and milling. Journal of Physics: Conference Series, 2009. 144(1): p. 012033.
    [166]. Song, K.K., Gargarella, P., Pauly, S., Ma, G.Z., Kühn, U., and Eckert, J., Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses. Journal of Applied Physics, 2012. 112(6): p. -.
    [167]. Kündig, A.A., Ohnuma, M., Ohkubo, T., Abe, T., and Hono, K., Glass formation and phase separation in the Ag–Cu–Zr system. Scripta Materialia, 2006. 55(5): p. 449-452.
    [168]. Karakaya, I. and Thompson, W.T., The Ag-Zr (silver-zirconium) system. Journal of Phase Equilibria, 1992. 13(2): p. 143-146.
    [169]. Raub, E. and Engel, M., Alloys of zirconium with copper, silver, and gold. Zeitschrift fuer Metallkunde, 1948. 39: p. 172-177.
    [170]. Karlsson, N., An X-ray study of the phases in the silver-zirconium system. Acta Chemica Scandinavica, 1952. 6: p. 1424–1430.
    [171]. Betterton, J.O., Jr. and Easton, D.S., The silver-zirconium system. Transactions of the Metallurgical Society of AIME, 1958. 212: p. 470-475.
    [172]. Nevitt, M.V. and Downey, J.W., A Family of Intermediate Phases Having the Si2Mo-Type Structure. transactions of the Metallurgical Society of AIME, 1962. 224: p. 195-196.
    [173]. Zhang, K., Zhao, H., and Zhou, Y., An investigation of the Ag-Zr phase diagram. Journal of the Less Common Metals, 1988. 138(2): p. 173-177.
    [174]. Loboda, T.P., Pyatnitskii, V.N., Raevskaya, M.V., and Sokolovskaya, E.M., Study of the zirconium-silver system by differential thermal analysis. Vestnik Moskovskogo Universiteta, Seriya 2: Khimiya, 1978. 19(3): p. 298-301.
    [175]. Fitzner, K. and Kleppa, O.J., Thermochemistry of binary alloys of transition metals: The Me-Ti, Me-Zr, and Me-Hf(Me = Ag, Au) systems. Metallurgical Transactions A, 1992. 23(3): p. 997-1003.
    [176]. Karakaya, I. and Thompson, W.T., Ag-Zr (Silver-Zirconium), in Binary Alloy Phase Diagrams-Second Edition, Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Editors. 1990, WIlliam W. Scott, Jr.: The United States of America. p. 117-119.
    [177]. King, H.W., Crystal structures of the elements at 25°C. Bulletin of Alloy Phase Diagrams, 1981. 2(3): p. 401-402.
    [178]. King, H.W., Temperature-dependent allotropic structures of the elements. Bulletin of Alloy Phase Diagrams, 1982. 3(2): p. 276-276.
    [179]. Metals Handbook, Metallography, structures and phase diagrams. 8th ed. Vol. 8. 1973, Metals Park, Ohio: American society for metals.
    [180]. Turchanin, M.A., Agraval, P.G., and Abdulov, A.R., Thermodynamic assessment of the Cu-Ti-Zr system. II. Cu-Zr and Ti-Zr systems. Powder Metallurgy and Metal Ceramics, 2008. 47(7-8): p. 428-446.
    [181]. Perry, A.J. and Hugi, W., A Contribution to the Copper-Rich Copper-Zirconium Phase Diagram. Journal of the Institute of Metals, 1972. 100: p. 378-380.
    [182]. Singh, R.P., Lawley, A., Friedman, S., and Murty, Y.V., Microstructure and properties of spray cast Cu-Zr alloys. Materials Science and Engineering: A, 1991. 145(2): p. 243-255.
    [183]. Braga, M.H., Malheiros, L.F., Castro, F., and Soares, D., Experimental liquidus points and invariant reactions in the Cu-Zr system. Zeitschrift fuer Metallkunde, 1998. 89(8): p. 541-545.
    [184]. Kneller, E., Yunus, K., and Gorres, U., The alloy system copper-zirconium. Part I. Phase diagram and structural relations. Zeitschrift fuer Metallkunde, 1986. 77(1): p. 43-48.
    [185]. Donachie, M.J., An investigation of the copper-rich portion of the copper-zirconium phase diagram by electron-probe microanalysis. Journal of the Institute of Metals, 1964. 92: p. 180.
    [186]. Vitek, J.M., Electron microprobe investigation of the intermediate phases in the Cu-Zr system. Zeitschrift für Metallkunde, 1976. 67(8): p. 559-564.
    [187]. Kuznetsov, G.M., Fedorov, V.N., Rodnyanskaya, A.L., and Nikonova, I.V., Study of the phase diagram of a copper-zirconium system. Tsvetnaya Metallurgiya, 1978(6): p. 91-94.
    [188]. Glimois, J.L., Forey, P., and Feron, J.L., Structural and physical studies of copper-rich alloys in the Cu-Zr system. Journal of The Less-Common Metals, 1985. 113(2): p. 213-224.
    [189]. Taguchi, O., Iijima, Y., and Hirano, K.-i., Reaction diffusion in the Cu-Zr system. Journal of Alloys and Compounds, 1994. 215(1–2): p. 329-337.
    [190]. Saitoh, M., Kajihara, M., Tomioka, Y., and Miyake, J., Microstructure formed by eutectic reaction in a binary Cu–12.3Zr alloy. Materials Science and Engineering: A, 2001. 318(1–2): p. 87-93.
    [191]. Arias, D. and Abriata, J.P., Cu-Zr (Copper-Zirconium). Bulletin of Alloy Phase Diagrams, 1990. 11(5): p. 452-459.
    [192]. Lundin, C.E., McPherson, D.J., and Hansen, M., System zirconium–copper. TRANSACTIONS AIME, 1953. 197: p. 273–278.
    [193]. Kleppa, O.J. and Watanabe, S., Thermochemistry of alloys of transition metals: Part III. Copper-Silver, -Titanium, Zirconium, and -Hafnium at 1373 K. Metallurgical Transactions B, 1982. 13(3): p. 391-401.
    [194]. Ansara, I., Pasturel, A., and Buschow, K.H.J., Enthalpy Effects in Amorphous Alloys and Intermetallic Compounds in the System Zr-Cu. physica status solidi (a), 1982. 69(2): p. 447-453.
    [195]. Sommer, F. and Choi, D.K., Thermodynamic investigations of liquid and glassy copper-zirconium alloys. Zeitschrift fuer Metallkunde, 1989. 80(4): p. 263-269.
    [196]. Berezutskii, V.V., Thermodynamic properties of liquid alloys of copper with zirconium. Ukrainskii Khimicheskii Zhurnal, 1993. 59(10): p. 1051-1053.
    [197]. Carvalho, E.M. and Harris, I.R., Constitutional and structural studies of the intermetallic phase, ZrCu. Journal of Materials Science, 1980. 15(5): p. 1224-1230.
    [198]. Zaitsev, A.I. and Zaitseva, N.E., The Thermodynamic Properties of Intermetallic Compounds and Solid Solutions of Cu–Zr System. High Temperature, 2003. 41(1): p. 42-48.
    [199]. Zaitsev, A.I., Zaitseva, N.E., Alekseeva, Y.P., Kuril'chenko, E.M., and Dunaev, S.F., Thermodynamic Properties of Melts and Phase Equilibria in the Copper–Zirconium System. Inorganic Materials, 2003. 39(8): p. 816-825.
    [200]. Zaitsev, A.I., Zaitseva, N.E., Alexeeva, J.P., Dunaev, S.F., and Nechaev, Y.S., Thermodynamics and amorphization of the copper-zirconium alloys. Physical Chemistry Chemical Physics, 2003. 5(19): p. 4185-4196.
    [201]. Wang, N., Li, C., Du, Z., Wang, F., and Zhang, W., The thermodynamic re-assessment of the Cu–Zr system. Calphad, 2006. 30(4): p. 461-469.
    [202]. Yamaguchi, K., Song, Y.C., Yoshida, T., and Itagaki, K., Thermodynamic investigation of the Cu–Zr system. Journal of Alloys and Compounds, 2008. 452(1): p. 73-79.
    [203]. Gierlotka, W., Zhang, K.C., and Chang, Y.P., Thermodynamic description of the binary Cu–Zr system. Journal of Alloys and Compounds, 2011. 509(33): p. 8313-8318.
    [204]. Zeng, K.J., Hämäläinen, M., and Lukas, H.L., A new thermodynamic description of the Cu-Zr system. Journal of Phase Equilibria, 1994. 15(6): p. 577-586.
    [205]. Zhou, S.H. and Napolitano, R.E., Phase stability for the Cu–Zr system: First-principles, experiments and solution-based modeling. Acta Materialia, 2010. 58(6): p. 2186-2196.
    [206]. Gabathuler, J.P., White, P., and Parthé, E., Zr14Cu51 and Hf14Cu51 with GdAg3.6 structure type. Acta Crystallographica Section B, 1975. 31(2): p. 608-610.
    [207]. Bsenko, L., Crystallographic data for intermediate phases in the copper-zirconium and copper-hafnium systems. Journal of the Less Common Metals, 1975. 40(3): p. 365-366.
    [208]. Turchanin, M.A. and Nikolaenko, I.V., Enthalpies of solution of titanium, zirconium, and hafnium in liquid copper. Journal of Alloys and Compounds, 1996. 236(1–2): p. 236-242.
    [209]. Witusiewicz, V., Arpshofen, I., and Sommer, F., Thermodynamics of liquid Cu-Si and Cu-Zr alloys. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1997. 88(11): p. 866-872.
    [210]. Turchanin, A.A. and Tomilin, I.A., Experimental investigations of the enthalpies of formation of Zr-based metallic amorphous binary and ternary alloys. Berichte der Bunsengesellschaft für physikalische Chemie, 1998. 102(9): p. 1252-1258.
    [211]. Turchanin, A.A., Tomilin, I.A., Inoue, A., and Zubkov, A.A., Expermimental Determination of the Enthalpies of Formation of the Copper-Zirconium Amorphous Alloys. Materials Science Forum, 1998. 269-272: p. 565-570.
    [212]. Turchanin, M.A., Enthalpies of formation of liquid copper alloys with 3d transition metals. Russian Metallurgy 1998. 4: p. 29-38.
    [213]. Turchanin, M.A. and Bilyk, G.B., Enthalpies of formation of liquid alloys of copper with titanium, zirconium, and hafnium. Metally, 1998(2): p. 14-19.
    [214]. Weihs, T.P., Barbee, T.W., and Wall, M.A., A low-temperature technique for measuring enthalpies of formation. Journal of Materials Research, 1996. 11(06): p. 1403-1409.
    [215]. Meschel, S.V. and Kleppa, O.J., Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry. Journal of Alloys and Compounds, 2003. 350(1–2): p. 205-212.
    [216]. Sidorov, O.Y., Esin, Y.O., and Gel'd, P.V., Heats of formation of zirconium alloys with iron, cobalt, nickel, and copper. Rasplavy, 1989(3): p. 28-33.
    [217]. Sudavtsova, V.S., Batalin, G.I., Kalmykov, A.V., and Kuznetsov, F.F., Heat of mixing of molten binary alloys of copper with yttrium and zirconium. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 1983(6): p. 107-108.
    [218]. Saarivirta, M.J., High Conductivity Copper-Rich Cu-Zr Alloys. Transactions of the Metallurgical Society of AIME, 1960. 218: p. 431-437.
    [219]. Showak, W., The solid solubility of zirconium in copper. Transactions of the Metallurgical Society of AIME, 1962. 224: p. 1297–1298.
    [220]. Korol'kov, A.M. and Lysova, E.V., Solubility of cerium and zirconium in copper in a solid state. Struktura i Svoistva Legkikh Splavov, 1971: p. 17–20.
    [221]. Hillmann, G. and Hofmann, W., Diffusionsmessungen im System Kupfer-Zirkonium. Zeitschrift für Metallkunde, 1965. 56(5): p. 279-286.
    [222]. Saunders, N., Phase diagram calculations for eight glass forming alloy systems. Calphad, 1985. 9(4): p. 297-309.
    [223]. Zwicker, U., Copper-zirconium alloys. I. Solubility of zirconium in high-purity copper. Metallwissenschaft und technik, 1962. 16(5): p. 409-412.
    [224]. Turchanin, A.A., Turchanin, M.A., and Agraval, P.G., Thermodynamics of Undercooled Liquid and Amorphous Binary metallic Alloys. Materials Science Forum, 2001. 360-362: p. 481-486.
    [225]. Nagase, T. and Umakoshi, Y., Electron irradiation induced crystallization behavior in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys. Materials Science and Engineering: A, 2003. 352(1–2): p. 251-260.
    [226]. Mattern, N., Han, J.H., Pradeep, K.G., Kim, K.C., Park, E.M., Kim, D.H., Yokoyama, Y., Raabe, D., and Eckert, J., Structure of rapidly quenched (Cu0.5Zr0.5)100−xAgx alloys (x=0–40 at.%). Journal of Alloys and Compounds, 2014. 607(0): p. 285-290.
    [227]. Nagase, T. and Umakoshi, Y., Effect of electron irradiation on nano-crystallization in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys. Materials Science and Engineering: A, 2003. 343(1–2): p. 13-21.
    [228]. Oriani, R.A. and Murphy, W.K., Heats of formation of liquid alloys at 1100° by a simple reaction calorimeter. The Journal of Physical Chemistry, 1958. 62(2): p. 199-202.
    [229]. Dokken, R.N. and Elliott, J.F., Calorimetry at 1100° to 1200°C: The Copper-Nickel, Copper-Silver, Copper-Cobalt Systems. Transactions of the Metallurgical Society of AIME, 1965. 233: p. 1351-1358.
    [230]. Fitzner, K., Guo, Q., Wang, J., and Kleppa, O.J., Enthalpies of liquid–liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in-situ mixing device in a high temperature single-unit differential calorimeter. Journal of Alloys and Compounds, 1999. 291(1–2): p. 190-200.
    [231]. Edwards, R.K. and Downing, J.H., The Thermodynamics of the Liquid Solutions in the Triad Cu–Ag–Au. I. The Cu–Ag System. Journal of Physical Chemistry, 1956. 60(1): p. 108-111.
    [232]. Golonka, J., Thermodynamic properties of Cu-Ag liquid solutions. Archiwum Hutnictwa, 1965. 10(2): p. 143-165.
    [233]. Nakamura, S., Yamaji, T., and Kato, E., Mass spectrometric study on the activities of components in molten Ag-Cu alloy system. Metallurgical Transactions, 1970. 1(9): p. 2645-2646.
    [234]. Choudary, U.V. and Ghosh, A., Thermodynamics of liquid copper‐silver alloys by a solid electrolyte cell. Journal of the electrochemical society, 1970. 117(8): p. 1024-1028.
    [235]. Wagner, S., Sodeck, G., and Neckel, A., Thermodynamic excess quantities of the liquid binary silver-copper by mass spectrometry. High Temperature Science, 1971. 3: p. 481-490.
    [236]. Golonka, J., Botor, J., and Dulat, M., Study of Cu-Ag liquid solutions by combined effusion vaporization and mass spectrometry sensing. Metals Technology, 1979. 6(7): p. 267-272.
    [237]. Azakami, T. and Yazawa, A., Activity Measurements of Liquid Copper-Silver and Copper-Tin Alloys by Knudsen Effusion Method. Journal of the Mining and Metallurgical Institute of Japan, 1970. 86(986): p. 377-382.
    [238]. Heycock, C.T. and Neville, F.H., Complete freezing-point curves of binary alloys containing silver or copper together with another metal. Philosophical Transactions of The Royal Society A, 1897. 189: p. 25-69.
    [239]. Vesnin, Y.I. and Shubin, Y.V., Equilibrium solid solubilities in the Ag-Cu system by X-ray diffractometry. Journal of Physics F: Metal Physics, 1988. 18(11): p. 2381-2386.
    [240]. Stockdale, D., The solid solutions of the copper-silver system. Journal of the Institute of Metals, 1931. 45: p. 127-155.
    [241]. Friedrich, K. and Leroux, A., Copper, silver and lead. Metallurgie, 1907. 4(10): p. 293-315.
    [242]. Hansen, M., Die Löslichkeit von Kupfer in Silber. Zeitschrift fuer Metallkunde, 1929. 21(6): p. 181-184.
    [243]. Ageew, N., Hansen, M., and Sachs, G., Entmischung und Eigenschaftsänderungen übersättigter Silber-Kupferlegierungen. Zeitschrift für Physik, 1930. 66(5-6): p. 350-376.
    [244]. Ageew, N. and Sachs, G., Röntgenographische Bestimmung der Löslichkeit von Kupfer in Silber. Zeitschrift für Physik, 1930. 63(5-6): p. 293-303.
    [245]. Smith, C.S. and Lindlief, W.E., The equilibrium diagram of the copper-rich copper-silver alloys. Transactions of the American Institute of Mining and Metallurgical engineers, 1932. 99: p. 101-118.
    [246]. Murray, J.L., Calculations of Stable and Metastable Equilibrium Diagrams of the Ag-Cu and Cd-Zn Systems. Metallurgical Transactions A, 1984. 15(2): p. 261-268.
    [247]. Hayes, F.H., Lukas, H.L., Effenberg, G., and Petzow, G., A thermodynamic pptimisation of the Cu-Ag-Pb system. Zeitschrift für Metallkunde, 1986. 77(11): p. 749-754.
    [248]. Lim, M.S.-S., Tibballs, J.E., and Rossiter, P.L., An assessment of thermodynamic equilibria in the Ag-Al-Cu-Mg quaternary system in relation to precipitation reactions. Zeitschrift für Metallkunde, 1997. 88(3): p. 236-245.
    [249]. Kusoffsky, A., Thermodynamic evaluation of the ternary Ag–Au–Cu system—including a short range order description. Acta Materialia, 2002. 50(20): p. 5139-5145.
    [250]. Sommer, F., Max-Plank-Instiut für Metallforschung,private communications to Witusiewicz et al., Germany, . 2000.
    [251]. Beja, R., PhD These, Sci Phys No AO 3656 Univ Aix-Marseille, France, 1969,
    [252]. Hansen, M. and Anderko, K., Ag-Cu (Silver-Copper), in Constitution of Binary Alloys. 1958, McGraw-Hill: New York.
    [253]. Elliott, R.P., Shunk, F.A., and Giessen, W.C., The Ag−Cu (Silver-Copper) system. Bulletin of Alloy Phase Diagrams, 1980. 1(1): p. 41-45.
    [254]. Haas, M. and Uno, D., Beitrag zum Hartungsproblem von Kupfer-Silber-, Beryllium-Kupfer- und Zink-Kupfer-Legierungen. Zeitschrift fuer Metallkunde, 1930. 22(5): p. 154-158.
    [255]. Subramanian, P.R. and Perepezko, J.H., The Ag-Cu (silver-copper) system. Journal of Phase Equilibria, 1993. 14(1): p. 62-75.
    [256]. Zhou, Y., Zhao, H., and Zhang, K., Investigation of the Ag-Cu-Zr ternary system. Journal of the Less Common Metals, 1988. 138(1): p. 7-10.
    [257]. He, X.C., Wang, Y.M., Liu, H.S., and Jin, Z.P., A study of the isothermal section of the Cu–Ag–Zr ternary system at 1023K by diffusion triple technique. Journal of Alloys and Compounds, 2007. 439(1–2): p. 176-180.
    [258]. 陳柏均, 銅-鋯-銀三元系統非晶區域之判定與銅-鋯-銀、銅-鋁-銀三元系統於500oC之相平衡, 碩士, 2012, 材料科學與工程學系, 國立臺灣科技大學, 台北市.
    [259]. Janovszky, D., Sycheva, A., Tomolya, K., Geiger, J., Solyom, J., and Roosz, A., Solidification processes in Cu–Zr–Ag amorphisable alloy system. Journal of Alloys and Compounds, 2014. 584: p. 600-606.
    [260]. Castellero, A., Kang, D.H., Jung, I.H., Angella, G., Vedani, M., and Baricco, M., Rapid solidification of silver-rich Ag–Cu–Zr alloys. Journal of Alloys and Compounds, 2012. 536, Supplement 1(0): p. S148-S153.
    [261]. Janovszky, D., Tomolya, K., Sycheva, A., and Kaptay, G., Stable miscibility gap in liquid Cu–Zr–Ag ternary alloy. Journal of Alloys and Compounds, 2012. 541(0): p. 353-358.
    [262]. Janovszky, D., Tomolya, K., Sycheva, A., Pekker, P., and Roósz, A., Liquid separation in Cu–Zr–Ag ternary alloys. Journal of Alloys and Compounds, 2014. 586, Supplement 1(0): p. S194-S198.
    [263]. Lukas, H.L., Henig, E.T., and Petzow, G., 50 years reaction scheme after Erich Scheil. Zeitschrift fuer Metallkunde, 1986. 77: p. 360-367.
    [264]. Schuster, J.C., Al-Zr (Aluminium-Zirconium). 2004, MSI, Materials Science International Services GmbH: Stuttgart, Germany.
    [265]. Kematick, R.J. and Franzen, H.F., Thermodynamic study of the zirconium-aluminum system. Journal of Solid State Chemistry, 1984. 54(2): p. 226-234.
    [266]. Murray, J., Peruzzi, A., and Abriata, J.P., The Al-Zr (aluminum-zirconium) system. Journal of Phase Equilibria, 1992. 13(3): p. 277-291.
    [267]. Peruzzi, A., Reinvestigation of the Zr-rich end of the Zr-Al equilibrium phase diagram. Journal of Nuclear Materials, 1992. 186(2): p. 89-99.
    [268]. Pötzschke, M. and Schubert, K., On the Construction of Some T4-B3 Homologous and Quasihomologous Systems. II. The Ti-Al, Zr-Al, Hf-Al, Mo-Al and some Ternary Systems. Zeitschrift für Metallkunde, 1962. 53(8): p. 548-561.
    [269]. Edshammar, L.E. and Andersson, S., Studies on the Zirconium-Aluminium and Hafnium-Aluminium Systems. Acta Chemica Scandinavica, 1960. 14: p. 223-224.
    [270]. Edshammar, L.E., Crystal Structure Investigations on the Zr-Al and Hf-Al Systems. Acta Chemica Scandinavica, 1962. 16: p. 20-30.
    [271]. Esin, Y.O., Bobrov, H., Petrushevskii, M., and Gel'd, B., Enthalpies of Formation of Liquid Alloys of Al with Ti and Zr. lzv. Akad. Nauk SSSR, Met., 1974. 5: p. 104-109.
    [272]. Saunders, N., Calculated Stable and Metastable Phase Equilibria in Al-Li-Zr Alloys. Zeitschrift für Metallkunde, 1989. 80(12): p. 894-903.
    [273]. Wang, T., Jin, Z., and Zhao, J.C., Thermodynamic assessment of the Al-Zr binary system. Journal of Phase Equilibria, 2001. 22(5): p. 544-551.
    [274]. de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K., Cohesion in Metals: Transition Metal Alloys. Cohesion and Structure, ed. de Boer, F.R. and Pettifor, D.G. 1989, Amsterdam, Netherlands: North Holland Physics Publishing. 758.
    [275]. Kubaschewski, O., Alcock, C.B., Jacob, K.T., Zador, S., Kubaschewski-von Goldbeck, O., Nowotny, H., and Seifert, K., Al-Zr, in Zirconium: physico-chemical properties of its compounds and alloys, special issue no.6, Kubaschewski, O., Editor. 1976, IAEA: Austria.
    [276]. Meschel, S.V. and Kleppa, O.J., Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. Journal of Alloys and Compounds, 1993. 191(1): p. 111-116.
    [277]. Sudavtsova, V.S., Batalin, G.I., and Tutevich, V.S., Thermodynamic Properties of Molten Binary Alloys in Systems Al-Zr (Nb,Mo). Izv. Akad. Nauk SSSR, Met., 1985. 5: p. 185-187.
    [278]. Batalin, G.I., Heats of Solution of Ti, Zr and B in liquid Al. Russ. Metall. 1: p. 61-63.
    [279]. Witusiewicz, V.T., Stolz, U.K., Arpshofen, I., and Sommer, F., Thermodynamics of Liquid Al-Cu-Zr Alloys. Zeitschrift für Metallkunde, 1998. 89(10): p. 704-713.
    [280]. Janghorban, A., Antoni-Zdziobek, A., Lomello-Tafin, M., Antion, C., Mazingue, T., and Pisch, A., Phase equilibria in the aluminium-rich side of the Al–Zr system. Journal of Thermal Analysis and Calorimetry, 2013. 114(3): p. 1015-1020.
    [281]. Okamoto, H., Al-Zr (aluminum-zirconium). Journal of Phase Equilibria, 1993. 14(2): p. 259-260.
    [282]. McPherson, D.J. and Hansen, M., The system zirconium-aluminum. Transactions of the American Society for Metals, 1954. 46: p. 354-374.
    [283]. Glazov, V.M., Lazarev, G.P., and Korol'kov, G.A., The solubility of some transition metals in aluminum. Metallovedenie i Termicheskaya Obrabotka Metallov, 1959(10): p. 48-50.
    [284]. Chiotti, P. and Woerner, P.F., Metal hydride reactions: I. Reaction of hydrogen with solutes in liquid metal solvents. Journal of the Less Common Metals, 1964. 7(2): p. 111-119.
    [285]. Drits, M.E., Kadaner, E.S., and Kuz'mina, V.I., Solubility of silicon and zirconium in aluminum. Izvestiya Akademii Nauk SSSR, Metally, 1968(1): p. 170-175.
    [286]. Tiwari, S.N. and Tangri, K., The solid solubility of aluminum in α-zirconium. Journal of Nuclear Materials, 1970. 34(1): p. 92-96.
    [287]. Schulson, E.M. and Graham, D.B., The peritectoid formation of ordered Zr3Al. Acta Metallurgica, 1976. 24(7): p. 615-625.
    [288]. Kuznetsov, G.M., Barsukov, A.D., and Abas, M.I., Study of Mn, Cr, Ti, and Zr solubility in solid aluminum. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 1983(1): p. 96-100.
    [289]. Saunders, N. and Rivlin, V.G., Thermodynamic characterization of Al–Cr, Al–Zr, and Al–Cr–Zr alloy systems. Materials Science and Technology, 1986. 2(6): p. 520-527.
    [290]. Wilson, C.G., Thomas, D.K., and Spooner, F.J., The crystal structure of Zr4Al3. Acta Crystallographica, 1960. 13(1): p. 56-57.
    [291]. McAlister, A.J., The Ag−Al (Silver-Aluminum) system. Bulletin of Alloy Phase Diagrams, 1987. 8(6): p. 526-533.
    [292]. Kawakami, M., A Further Investigation of the Heat of Mixture in Molten Metals. Sci. Re. Tohoku Imp. Uni., 1930. 19: p. 521-549.
    [293]. Itagaki, K. and Yazawa, A., Heats of Mixing in Liquid Silver Binary Alloys. Transactions of the Japan Institute of Metals, 1969. 10(4): p. 259-266
    [294]. Itagaki, K. and Yazawa, A., Measurements of Heats of Mixing in Liquid Silver Binary Alloys. Journal of the Japan Institute of Metals, 1968. 32(12): p. 1294-1300.
    [295]. Belton, G.R. and Fruehan, R.J., Mass Spectrometric Determination of Activities in Iron-Aluminum and Silver-Aluminum Liquid Alloys. Transactions of the Metallurgical Society of AIME, 1969. 245: p. 113-117.
    [296]. Wilder, T.C. and Elliott, J.F., Thermodynamic Properties of the Aluminum‐Silver System. Journal of the electrochemical society, 1960. 107(7): p. 628-635.
    [297]. Massart, G., Desré, P., and Bonnier, E., Thermodynamics of aluminum-silver alloys. Journal de chimie physique et de physicochimie biologique, 1970. 67: p. 1485-1488.
    [298]. Hillert, M., Averbach, B.L., and Cohen, M., Thermodynamic properties of solid aluminum-silver alloys. Acta Metallurgica, 1956. 4(1): p. 31-36.
    [299]. Wittig, F.E. and Schilling, W., Die Bildungswärmen im System Aluminium-Silber bei 470°-XIII. Beiträge zur Energetik metallischer Systeme. Zeitschrift für Metallkunde, 1959. 50: p. 610-617.
    [300]. Baier, M., Chatillon-Colinet, C., and Mathieu, J.C., Determination of the β phase formation enthalpy in the silver-aluminum system by solution calorimetry in liquid aluminum. Annales de Chimie 1981. 6(4): p. 291-299.
    [301]. McAlister, A.J., Ag-Al (Silver-Aluminum), in Binary Alloy Phase Diagrams-SecondEdition, Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Editors. 1990, WIlliam W. Scott, Jr.: The United States of America. p. 8-9.
    [302]. Spencer, P.J. and Kubaschewski, O., A thermodynamic evaluation of the Ag-Al system. Monatshefte für Chemie / Chemical Monthly, 1987. 118(2): p. 155-167.
    [303]. Lim, S.S., Rossiter, P.L., and Tibballs, J.E., Assessment of the Al-Ag binary phase diagram. Calphad, 1995. 19(2): p. 131-141.
    [304]. Hume-Rothery, W., Raynor, G.V., Reynolds, P.W., and Packer, H.K., The constitution and structure of alloys of intermediate composition in the systems Copper-Indium, Copper-Aluminium, Copper-Germanium, Silver-Aluminium, and Silver-Germanium. Journal of the Institute of Metals, 1940. 66: p. 209-239.
    [305]. Raynor, G.V. and Wakeman, D.W., The primary solid solution of silver in aluminium. The philosophical magazine, 1949. 40: p. 404-417.
    [306]. Köster, W. and Knödler, A., Über die Aushärtung von Aluminium-Silber-Legierungen- X. Temperaturabhängigkeit des elektrischen Widerstandes. Zeitschrift für Metallkunde, 1955. 46: p. 632-639.
    [307]. Roberts, G.D. and Chadwick, G.A., Terminal solid solubility limits in the Al-Ag2Al eutectic system. Scripta Metallurgica, 1978. 12(4): p. 381-382.
    [308]. Hansen, M. and Anderko, K., Ag-Al (Silver-Aluminum), in Constitution of Binary Alloys. 1958, McGraw-Hill: New York. p. 1-3.
    [309]. Rieger, W., Nowotny, H., and Benesovsky, F., Crystallochemical investigation of systems containing ternary elements, (Cu, Ag) and (Al, Ga). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964. 95(6): p. 1573-1576.
    [310]. Kotur, B. and Verbovytsky, Y., Phase equilibria in the {Zr, Hf}-Ag-Al systems at 500C and crystal structure of the ternary compounds. Prace Naukowe WSP. Chemia, 2003. 8: p. 7–15.
    [311]. 陳皓, 鋯-鋁-銀非晶區域之判定與鋯-鋁-銀三元系統於500oC之相平衡, 碩士, 2010, 工程技術研究所, 國立臺灣科技大學, 台北市.
    [312]. Gröbner, J., Al-Cu (Aluminium-Copper). 2004, MSI, Materials Science International Services GmbH: Stuttgart, Germany.
    [313]. Murray, J.L., The aluminium-copper system. International Metals Reviews, 1985. 30(1): p. 211-234.
    [314]. Ponweiser, N., Investigation of phase equilibria and structural analysis in the systems Al-Cu, Cu-Si, Al-Cu-Si and Al-Mo-Si, Dissertation, 2011, Fakultät für Chemie, University of Vienna,
    [315]. Kaufman, L. and Nesor, H., Coupled phase diagrams and thermochemical data for transition metal binary systems — V. Calphad, 1978. 2(4): p. 325-348.
    [316]. Chen, S.W., Chuang, Y.Y., Chang, Y.A., and Chu, M.G., Calculation of phase diagrams and solidification paths of Al-rich Al−Li−Cu alloys. Metallurgical Transactions A, 1991. 22(12): p. 2837-2848.
    [317]. Saunders, N., Al-Cu system. COST-507: Thermochemical Database For light Metal Alloys. 1998, Luxemburg: European Communities.
    [318]. Liang, H. and Chang, Y.A., A thermodynamic description for the Al-Cu-Zn system. Journal of Phase Equilibria, 1998. 19(1): p. 25-37.
    [319]. Miettinen, J., Thermodynamic description of the Cu-Al-Zn and Cu-Sn-Zn systems in the copper-rich corner. Calphad, 2002. 26(1): p. 119-139.
    [320]. Kubaschewski, O. and Catterall, J.A., Cu-Al (Copper-Aluminium), in Thermochemical data of alloys. 1956, Pergamon press: London & New York. p. 78-80.
    [321]. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K.K., Al-Cu (Aluminum-Copper), in Selected Values of the Thermodynamic Properties of Binary Alloys. 1973, American Society For Metals: Metals Park, Ohio. p. 151-155.
    [322]. Itagaki, K. and Yazawa, A., Heats of Mixing in Liquid Copper or Gold Binary Alloys. Transactions of the Japan Institute of Metals, 1975. 16(11): p. 679-686.
    [323]. Stolz, U.K., Arpshofen, I., Sommer, F., and Predel, B., Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter. Journal of Phase Equilibria, 1993. 14(4): p. 473-478.
    [324]. Oelsen, W. and Middel, W., Zur Thermochemie der Legierungen I. Unmittelbare Bestimmung der Bildungswaermen der Legierungsreihen Kobalt-Silizium, Eisen-Aluminium, Kobalt-Aluminium, Nickel-Aluminium, Kupfer-Aluminium und Antimon-Zink fue den Grosszustand. Mitteilungen aus dem Kaiser-Wilhelm-Institut fuer Eisenforschung zu Duesseldorf, 1937. 19: p. 1-26.
    [325]. Kubaschewski, O. and Heymer, G., Heats of formation of transition-metal aluminides. Transactions of the Faraday Society, 1960. 56(0): p. 473-478.
    [326]. Sinvhal, R.C. and Khangaonkar, P.R., Heats of formation of some aluminum alloys by differential calorimetry. Transactions of the Indian Institute of Metals, 1967. 20: p. 107-110.
    [327]. Hair, J. and Downie, D.B., Thermodynamic properties of the Cu-Al system: correlation with bonding mechanisms. Faraday Symposia of the Chemical Society, 1973. 8(0): p. 56-63.
    [328]. Grube, G. and Hantelmarm, P., Polarisationsmessungen bei der elektrolytischen Raffination des Aluminiums nach dem Dreischichtenverfahren. I. Mitteilung. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1942. 48: p. 399-409.
    [329]. Wilder, T.C., The Thermodynamic Properties of the Liquid Aluminum-Copper System. Transactions of the Metallurgical Society of AIME, 1965. 233: p. 1202-1208.
    [330]. Mitani, H. and Nagai, H., Determination of the Activities of Aluminum and Cupper in Liquid Al-Cu Binary Alloys by the Bubbling Method. Journal of the Japan Institute of Metals, 1969. 33(3): p. 344-348.
    [331]. Layner, D.I., Ostrovskaya, L.M., and Serebryannikova, O.S., Activities of components in liquid Cu-Al alloys. Izvestija Akademii Nauk SSSR/Metally, 1976(1): p. 15-18.
    [332]. Batalin, G.I., Beloborodova, E.A., and Vasilev, V.N., Thermodynamic properties of molten alloys of aluminium with copper. Ukrainskii Khimicheskii Zhurnal, 1972. 38: p. 920-923.
    [333]. Ali, S.A., Samokhval, V.V., Geiderikh, V.A., and Vecher, A.A., Thermodynamic Properties of Solid Copper-Aluminium Alloys. Russian journal of physical chemistry, 1972. 46(1): p. 139-140.
    [334]. Schaller, H.J., Fickel, G., and Maaz, A., Thermodynamic Properties of Solid Copper-Aluminum and Copper-Germanium Alloys. Nato Asi Ser., Ser. C, 1989. 286: p. 359-370.
    [335]. Kwarciak, J., Phase Transformations in Cu-Al and Cu-Zn-Al Alloys. Journal of Thermal Analysis, 1986. 31: p. 559-566.
    [336]. Liu, X.J., Ohnuma, I., Kainuma, R., and Ishida, K., Phase equilibria in the Cu-rich portion of the Cu–Al binary system. Journal of Alloys and Compounds, 1998. 264(1–2): p. 201-208.
    [337]. Witusiewicz, V.T., Hecht, U., Fries, S.G., and Rex, S., The Ag–Al–Cu system: II. A thermodynamic evaluation of the ternary system. Journal of Alloys and Compounds, 2005. 387(1–2): p. 217-227.
    [338]. Tretyachenko, L., Al-Cu-Zr Ternary Phase Diagram Evaluation. 2004, MSI, Materials Science International Services GmbH: Stuttgart, Germany.
    [339]. Bo, H., Wang, J., Jin, S., Qi, H.Y., Yuan, X.L., Liu, L.B., and Jin, Z.P., Thermodynamic analysis of the Al–Cu–Zr bulk metallic glass system. Intermetallics, 2010. 18(12): p. 2322-2327.
    [340]. Markiv, V.Y. and Burnashova, V.V., Systems zirconium-chromium-aluminum and zirconium-copper-aluminum. Soviet Powder Metallurgy and Metal Ceramics, 1970. 9(12): p. 998-1002.
    [341]. Soares, D.F. and De Castro Portela, F., Study of the effect of zirconium addition to the Al-rich alloys of the Al-Cu and Al-Cu-Mg systems. Berichte der Bunsengesellschaft für physikalische Chemie, 1998. 102(9): p. 1181-1184.
    [342]. Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C., Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Materialia, 2006. 54(2): p. 349-355.
    [343]. Bhatta, J., Jiang, W., Junhai, X., Qing, W., Dong, C., and Murty, B.S., Optimization of bulk metallic glass forming compositions in Zr–Cu–Al system by thermodynamic modeling. Intermetallics, 2007. 15(5–6): p. 716-721.
    [344]. Wang, Q., Dong, C., Qiang, J.B., and Wang, Y.M., Cluster line criterion and Cu–Zr–Al bulk metallic glass formation. Materials Science and Engineering: A, 2007. 449–451(0): p. 18-23.
    [345]. Shin, H.S., Park, J.S., Jung, Y.C., Ahn, J.H., Yokoyama, Y., and Inoue, A., Similar and dissimilar friction welding of Zr–Cu–Al bulk glassy alloys. Journal of Alloys and Compounds, 2009. 483(1–2): p. 182-185.
    [346]. Baser, T.A., Das, J., Eckert, J., and Baricco, M., Glass formation and mechanical properties of (Cu50Zr50)100−xAlx (x=0, 4, 5, 7) bulk metallic glasses. Journal of Alloys and Compounds, 2009. 483(1–2): p. 146-149.
    [347]. Pauly, S., Das, J., Mattern, N., Kim, D.H., and Eckert, J., Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses. Intermetallics, 2009. 17(6): p. 453-462.
    [348]. 張顧中, 銅-鋯-鋁三元系統非晶區域之研究, 碩士, 2013, 材料科學與工程系, 國立臺灣科技大學, 台北市.
    [349]. Ueno, S., On the ternary silver alloys III. The system of silver, copper and aluminium, in Anniversary volume dedicated to Masumi Chikashige, by his pupils in celebration of his sixtieth birthday. 1930, Kyoto Kagaku Gakushi kwai. p. 57-75.
    [350]. Massalski, T.B. and Perepezko, J.H., Constitution and phase relationships in copper-silver-aluminium ternary system. Zeitschrift für Metallkunde, 1973. 64(3): p. 176-181.
    [351]. Chang, Y.A., Neumann, J.P., Mikula, A., and Goldberg, D., The Ag−Al−Cu (Silver-Aluminum-Copper) system. Bulletin of Alloy Phase Diagrams, 1980. 1(1): p. 34-35.
    [352]. Liu, S., Zhao, S., and Zhang, Q., Note on the phase diagram of Al-Cu-Ag alloy system. Acta Metallurgica Sinica, 1983. 19(2): p. 70-73.
    [353]. Kumar, K. and Arkens, O., Ag-Al-Cu Ternary Phase Diagram Evaluation. 2004, MSI, Materials Science International Services GmbH: Stuttgart, Germany.
    [354]. Flandorfer, H. and Hayer, E., Partial and integral enthalpy of molten Ag–Al–Cu alloys. Journal of Alloys and Compounds, 2000. 296(1–2): p. 112-118.
    [355]. Witusiewicz, V.T., Hecht, U., Rex, S., and Sommer, F., Partial and integral enthalpies of mixing of liquid Ag–Al–Cu and Ag–Cu–Zn alloys. Journal of Alloys and Compounds, 2002. 337(1–2): p. 189-201.
    [356]. Gable, B.M., Zhu, A.W., Shiflet, G.J., and Starke Jr, E.A., Assessment of the aluminum-rich corner of the Al–Cu–Mg–(Ag) phase diagram. Calphad, 2008. 32(2): p. 256-267.
    [357]. Šimšić, Z.S., Živković, D., Manasijević, D., Grgurić, T.H., Du, Y., Gojić, M., Kožuh, S., Kostov, A., and Todorović, R., Thermal analysis and microstructural investigation of Cu-rich alloys in the Cu–Al–Ag system. Journal of Alloys and Compounds, 2014. 612(0): p. 486-492.
    [358]. Zhang, W., Zhang, Q.S., and Inoue, A., Fabrication of Cu–Zr–Ag–Al glassy alloy samples with a diameter of 20 mm by water quenching. Journal of Materials Research, 2008. 23(05): p. 1452-1456.
    [359]. Louzguine-Luzgin, D.V., Xie, G., Zhang, Q., Suryanarayana, C., and Inoue, A., Formation, Structure, and Crystallization Behavior of Cu-Based Bulk Glass-Forming Alloys. Metallurgical and Materials Transactions A, 2010. 41(7): p. 1664-1669.
    [360]. Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K., Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Materialia, 2005. 53(2): p. 165-169.
    [361]. Wang, X., Cao, Q.P., Chen, Y.M., Hono, K., Zhong, C., Jiang, Q.K., Nie, X.P., Chen, L.Y., Wang, X.D., and Jiang, J.Z., A plastic Zr–Cu–Ag–Al bulk metallic glass. Acta Materialia, 2011. 59(3): p. 1037-1047.
    [362]. Tomolya, K., Janovszky, D., Sycheva, A., Benke, M., Erdőhegyi, C., and Roosz, A., Investigation of AgAlCuZr amorphous/crystalline structure produced by casting and milling. Journal of Alloys and Compounds, 2014. 586, Supplement 1(0): p. S184-S188.

    QR CODE