簡易檢索 / 詳目顯示

研究生: 李魁原
Kuei-yuan Lee
論文名稱: 微機電技術發展與產業技術策略的演變
Microelectromechanical Systems: TechnologicalDevelopment and Industrial Strategies
指導教授: 劉顯仲
John S. Liu
口試委員: 何秀青
Mei H.C. Ho
盧煜煬
Louis Y.Y. Lu
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 48
中文關鍵詞: 微機電系統主路徑分析技術軌跡引證網路集群分析
外文關鍵詞: microelectromechanical system, main path analysis, technological trajectory, citation network, cluster analysis
相關次數: 點閱:391下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統(microelectromechanical system, MEMS) 技術範圍涵蓋甚廣,早期多應用於車用電子,近年則因消費性電子的興起與生醫領域的應用而蓬勃發展,本研究選定微機電技術應用領域,透過微機電技術的專利引證網路,探討其關鍵技術的發展與未來可能之應用方向,並以企業所申請專利之國際專利分類代碼為依據將其分群,探討不同企業策略方向之集群在微機電技術發展過程中之轉變。
    本研究之資料來源為全球專利資訊網(WEBPAT),蒐集自1976年至2013年間共3325筆關於微機電技術應用之專利,利用專利間的引用關係建立引證網路。在主路徑分析中,專利因被引用狀況的不同而會有權重值的差異,將權重值較高之專利建立網路圖後便成為此技術之主路徑;主路徑上之專利通常為核心或關鍵之技術。透過主路徑分析方法有助於了解產業技術的重點發展,亦有助於協助技術或學術人員快速學習不同領域之核心。而將發展關鍵技術的企業依研發的技術領域為基礎進行集群分析,以了解不同技術策略的集群在微機電發展過程中所扮演的角色。
    本研究發現微機電領域的發展初期技術多圍繞在加速度計的改良,近期則著重於微致動器之應用,微致動器用有響應速度快、使構件產生較大位移等優點,常被應用於光學與機械微系統中。企業研發微機電系統亦有不同策略考量,關鍵技術發展初期的企業多朝單一技術發展,而後有企業將微機電技術做多元化應用,近年則以發展電子元件及感測器與的企業為主流。


    There are diverse applications of the technology of microelectromechanical system (MEMS), which were commonly used in vehicle systems in the early stages and had a great progression due to the rapid growth with consuming electronic products and BioMEMS in recent years. The study focuses on the applications of microelectromechanical system, and explores its key technologies and further applications through the patent citation network.
    The dataset of the study focuses on the technology of MEMS and its applications, searched from Webpat patent database, in a total number of 3325 patents. The differences between cited or citing relationships in the patent citation network will lead to the different search paths. The main path analysis constructs the paths via choosing the most significant search paths, thus the technologies that appear on the main path are usually regarded as the important ones. The main path analysis not only contributes to the understanding of the technology development in the industry but help engineers or researchers to learn the new knowledge quickly. Based on the technologies that the firms have involved in, the study uses cluster analysis separating them into several clusters to find out the role of the clusters with different technology strategies among the development of MEMS technology.
    The study finds that the mainstreams of MEMS technology are focused on the improvement of the accelerometers in the beginning, which are now spotlight on the micro-actuators. The micro-actuators have advantages such as fast response speed and making larger displacement to the components if needed, and it is usually used in optical and mechanical systems. There are also different kinds of strategies when the firms develop the MEMS technology. In the primary stage, most of the firms put emphasis on the single technique; afterwards, other firms apply MEMS technology in diverse applications.

    摘要 I Abstract II 致謝 III 第壹章 緒論 1 一、 研究背景 1 二、 微機電系統 1 三、 研究目的與問題 6 第貳章 文獻探討 7 一、 微機電產業發展 7 二、 主路徑分析 8 第參章 研究方法 10 一、 研究架構 10 二、 資料來源 11 三、 資料蒐集與關鍵字檢索 11 四、 引證網路與技術軌跡 15 五、 主路徑分析 16 六、 集群分析 23 第肆章 研究結果 24 一、 基本資料統計 24 二、 微機電技術專利成長分析 25 三、 微機電系統專利技術軌跡 29 四、 微機電技術應用的演變 34 五、 微機電廠商策略發展變化 38 第伍章 研究結論 42 一、 微機電技術軌跡與關鍵技術之發展 42 二、 發展微機電之企業策略與轉變 44 三、 管理意涵 45 參考文獻 46

    1. Batagelj, V. (2003). "Efficient algorithms for citation network analysis." arXiv preprint cs/0309023.

    2. Becker, E., et al. (1986). "Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)." Microelectronic engineering4(1): 35-56.

    3. Bustillo, J. M., et al. (1998). "Surface micromachining for microelectromechanical systems." Proceedings of the IEEE86(8): 1552-1574.

    4. Calero-Medina, C. and E. Noyons (2008). "Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field." Journal of Informetrics2(4): 272-279.

    5. Carley, K. M., et al. (1993). "Scientific Influence An Analysis of the Main Path Structure in the Journal of Conflict Resolution." Science Communication14(4): 417-447.

    6. de Nooy, W., et al. (2005). Exploratory social network analysis with Pajek, Cambridge University Press.

    7. Fujita, H. (1997). A decade of MEMS and its future. Micro Electro Mechanical Systems, 1997. MEMS'97, Proceedings, IEEE., Tenth Annual International Workshop on, IEEE.

    8. Hsu, T.-R. (2008). MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering, John Wiley & Sons.

    9. Hummon, N. P. and K. Carley (1993). "Social networks as normal science∗." Social Networks15(1): 71-106.

    10. Hummon, N. P. and P. Dereian (1989). "Connectivity in a citation network: The development of DNA theory." Social Networks11(1): 39-63.

    11. Hummon, N. P., et al. (1990). "Analyzing the structure of the centrality-productivity literature created between 1948 and 1979." Science Communication11(4): 459-480.

    12. Kaufman, L. and P. J. Rousseeuw (2009). Finding groups in data: an introduction to cluster analysis, Wiley. com.

    13. Kovacs, G. T., et al. (1998). "Bulk micromachining of silicon." Proceedings of the IEEE86(8): 1536-1551.

    14. Liu, C. (2006). "Foundation of MEMS." Electrical and computer Department University of Illionis at Urbana-Champaign Pearson Education International.

    15. Liu, J. S. and L. Y. Lu (2012). "An integrated approach for main path analysis: Development of the Hirsch index as an example." Journal of the American Society for Information Science and Technology63(3): 528-542.

    16. Liu, J. S., et al. (2013). "Data envelopment analysis 1978–2010: A citation-based literature survey." Omega41(1): 3-15.

    17. Lucio‐Arias, D. and L. Leydesdorff (2008). "Main‐path analysis and path‐dependent transitions in HistCite™‐based historiograms." Journal of the American Society for Information Science and Technology59(12): 1948-1962.

    18. Mina, A., et al. (2007). "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge." Research Policy36(5): 789-806.

    19. Polla, D. L. (2001). BioMEMS applications in medicine. Micromechatronics and Human Science, 2001. MHS 2001. Proceedings of 2001 International Symposium on, IEEE.

    20. Porter, M. E. (1979). "The structure within industries and companies' performance." The Review of Economics and Statistics61(2): 214-227.

    21. Sher, I., et al. (1964). "The Use of Citation Data in Writing the History of Science." Institute for Scientific Information, Philadelphia.

    22. Verspagen, B. (2006). "University research, intellectual property rights and European innovation systems." Journal of Economic Surveys20(4): 607-632.

    23. Verspagen, B. (2007). "Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research." Advances in Complex Systems10(01): 93-115.

    24. Vigna, B. (2006). Future of MEMS: an industry point of view. Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006. 7th International Conference on, IEEE.

    25. Xiao, H. (2001). Introduction to semiconductor manufacturing technology, Prentice Hall Upper Saddle River, New Jersey.

    26. 李羽晨 (2014). 主路徑方法與傳統法學研究方法之比較:以商標淡化為例. 科技管理所. 台北市, 國立臺灣科技大學. 碩士: 84.

    27. 林文正 (2011). 台灣微機電產業的轉機與問題對策探討-以微加速度計為例. 高階主管管理碩士學程. 新竹市, 國立交通大學. 碩士: 62.

    28. 林順利 (2009). 台灣微機電產業未來十年可能的定位與發展. 高階經營碩士班. 高雄市, 國立中山大學. 碩士: 83.

    29. 曾祐強 (2011). 磷酸鋰鐵電池發展趨勢—學術論文之主路徑分析. 科技管理所. 台北市, 國立臺灣科技大學. 碩士: 91.

    30. 黃嘉宏 (2010). 台灣CMOS 微機電產業之發展機會. 管理學院碩士在職專班科技管理組. 新竹市, 國立交通大學. 碩士: 75.

    31. 鍾憲瑞 (2008). 產業分析精論, 前程文化事業有限公司出版.

    32. 蘇立雅 (2013). 科學與技術關聯性分析:以磷酸鋰鐵電池技術演化為例. 科技管理所. 台北市, 國立臺灣科技大學. 碩士: 74.

    QR CODE