簡易檢索 / 詳目顯示

研究生: 陳清山
CHING-SHAN CHEN
論文名稱: 考量多目標及規劃偏好之中小學校舍最適規劃模式
Optimal Planning Model for School Buildings considering the Trade-Off of MOOP and Planning Preference
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 張陸滿
none
姚乃嘉
none
曾仁杰
none
晁立中
none
楊亦東
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 150
中文關鍵詞: 中小學校舍模糊理論無異曲線效率前緣資料包絡分析法
外文關鍵詞: School Buildings, Fuzzy theory, Indifference Curve, Efficient Frontier, Data Envelopment Analysis
相關次數: 點閱:264下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築師於規劃設計中小學校舍時,通常會考慮兩項重要規劃目標-即校舍之耐震性及經濟性。但此兩項目標常常是互相衝突的,考慮耐震性為主的校舍,將會增加校舍建築成本,造成校舍不夠經濟; 反之,以經濟性為考量重點的校舍,則易使校舍的耐震性不足,此兩項衝突目標即為多目標規劃最佳化問題,並經常困擾著建築師,造成建築師規劃設計中小學校舍時的無所適從。為探究此目標衝突問題,本論文乃以考量耐震性及經濟性兩項規劃目標下之中小學校舍最適規劃模式為研究主題。
    除了目標衝突的問題外,建築師於規劃設計中小學校舍時,亦常常具有某些主觀的特質,故如何適切地詮釋這些主觀特性,使校舍之規劃設計能符合建築師之規劃偏好,並達到業主的需求,亦成為一個值得探討和深入研究的課題。
    為解決上述中小學校舍多目標規劃最佳化問題並詮釋建築師的主觀規劃偏好,本論文發展了一套方法論。此方法論所引用的理論包括模糊理論、無異曲線、效率前緣以及資料包絡分析法等觀念。藉由模糊理論原理可建構出建築師的耐震偏好函數和經濟偏好函數; 結合無異曲線的觀念,則可定義建築師的五種規劃偏好,並推論建築師同時考量耐震性及經濟性時之規劃偏好; 效率前緣理論則可以從中小學校舍案例中,以資料包絡分析法之原理求出最有效率的一群案例,此群案例可建構出中小學校舍之效率前緣,作為建築師規劃設計校舍時的依據,建築師亦可藉此評估校舍之規劃效率。本論文並以位於臺中市市中心區之326棟校舍為研究範例,以詮釋本論文之方法論。


    Generally speaking, the most important criteria in school building planning are safety and cost. The general aim of an architect is to guarantee the safety of the structure while using a minimum amount of material. However, these two objectives are often in conflict. Buildings designed for seismic resistance prioritize safety and often require significant additional budgetary outlays. Buildings designed for cost effectiveness, therefore, often offer inadequate seismic resistance. It's a Multi-Objective Optimization Problem (MOOP). Thus, architects, who must also strike an optimal balance between two conflicting objectives, may be indecisive when planning school buildings. To address these conflicting objectives, this thesis develops an optimal planning model that considers both seismic resistance and cost effectiveness.
    Except for the two conflicting objectives, there exists the subjective characteristics when architects planning the school buildings. It is also deserved further investigation to explain these subjective characteristics adequately to match the architect's planning preference and the proprietor's demands.
    In order to interpret the MOOP of the school buildings and the subjective characteristics of architects, this thesis presents the optimal planning model (OPM) based on multi-objective optimization problems (MOOP) to solve the problem of achieving adequate seismic resistance in the most cost effective way when planning school buildings. The OPM integrates fuzzy theory, indifference curve, efficient frontier and data envelopment analysis (DEA), and defines five types of architect planning preferences. The fuzzy theory was used to develop the seismic preference function and economic preference function, which can interpret relative individual architect preferences for either seismic resistance or cost effectiveness and determine the position for the two points on the indifference curve. After determining such, the slope of the indifference curve may be quickly determined. The planning preference and planning weight can then be deduced. This thesis applies the efficient frontier via DEA to identify a group of plans with the highest seismic performance index under different unit construction cost conditions for school buildings. This group of plans may create an efficient frontier curve for school buildings, with points serving as benchmarks. Finally, this thesis uses 326 school buildings in central Taichung City, Taiwan as the sample to interpret the developed research method. Optimal planning model for school buildings was achieved to provide a paragon for architects to plan school buildings and evaluate the planning efficiencies of school buildings.

    目錄 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究範圍及內容 4 1.4 研究流程與步驟 5 1.5 論文架構 10 第二章 文獻回顧 13 2.1中小學校舍建築特色 13 2.2中小學校舍受震破壞狀況 16 2.3中小學校舍耐震課題文獻 24 2.3.1耐震課題研究現況 24 2.3.2耐震指標IS 29 2.3.3崩塌地表加速度 34 2.3.4臺中市中小學校舍耐震課題研究 36 2.4中小學校舍經濟課題文獻 53 2.4.1經濟課題研究現況 53 2.4.2臺中市中小學校舍經濟課題研究 56 2.5小結 60 第三章 研究方法 61 3.1偏好理論 61 3.1.1 偏好的基本假設 62 3.1.2 公理 62 3.1.3 偏好與效用函數 64 3.2 模糊理論 64 3.2.1 隸屬函數 65 3.2.2 模糊集合的α截集(α-Cut) 69 3.2.3 模糊數 70 3.3 無異曲線 74 3.3.1無異曲線特性 75 3.3.2無異曲線形狀 76 3.4 效率前緣 79 3.5 資料包絡分析法 81 3.5.1 資料包絡分析法簡介 81 3.5.2 資料包絡分析法原理 83 3.6 小結 86 第四章 中小學校舍最適規劃模式 87 4.1 多目標規劃及求解方法 89 4.2 校舍最適規劃模式 91 4.2.1 建築師規劃偏好 91 4.2.2 偏好函數μ(x) 94 4.2.3 規劃偏好程度和規劃偏好權重 96 4.2.4 中小學校舍效率前緣 98 4.2.5 中小學校舍最適規劃模式 100 4.2.6 地面層單根柱寬度規劃偏好設計曲線 102 4.3 規劃效率評估模式 103 4.3.1耐震效率、經濟效率以及規劃效率之定義 104 4.3.2不同規劃偏好之標竿學習對象 106 4.3.3標竿學習對象之求法 107 4.4小結 110 第五章 實證研究—以臺中市中小學校舍為例 112 5.1 中小學校舍最適規劃模式 112 5.1.1以模糊理論設定偏好函數μ(x) 112 5.1.2以無異曲線定義規劃偏好及權重 114 5.1.3以資料包絡分析法計算校舍效率前緣 115 5.1.4以無異曲線及效率前緣決定校舍最適規劃模式 117 5.1.5各種規劃偏好之最適地面層單根柱寬度 120 5.2中小學校舍規劃效率評估 123 5.2.1相同校舍不同規劃偏好之規劃效率計算 123 5.2.2不同校舍相同規劃偏好之規劃效率計算 127 5.3模式驗證 128 5.4小結 132 第六章 結論與建議 134 6.1結論 134 6.1.1中小學校舍最適規劃模式結論 134 6.1.2中小學校舍規劃效率評估結論 135 6.1.3模式驗證結論 135 6.2建議 136 參考文獻 138 中文部份 138 英文部份 142 圖目錄 圖1-1 研究流程 6 圖2-1 崩塌地表加速度與柱量比及磚牆壁量比關係圖 35 圖2-2 第一分群校舍耐震指標IS推論結果 45 圖2-3 第一分群校舍崩塌地表加速度推論結果 46 圖2-4 第二分群校舍耐震指標IS推論結果 46 圖2-5 第二分群校舍崩塌地表加速度推論結果 47 圖2-6 第三分群校舍耐震指標IS推論結果 47 圖2-7 第三分群校舍崩塌地表加速度推論結果 48 圖2-8 第四分群校舍耐震指標IS推論結果 48 圖2-9 第四分群校舍崩塌地表加速度推論結果 49 圖2-10 耐震因子數目變化對耐震評估模式的影響 51 圖2-11 案例數目變化對耐震評估模式的影響 52 圖2-12 第一分群校舍單位造價推論結果 57 圖2-13 第二分群校舍單位造價推論結果 58 圖2-14 第三分群校舍單位造價推論結果 58 圖2-15 第四分群校舍單位造價推論結果 59 圖3-1 偏好轉換為效用函數 64 圖3-2 模糊集合A與B的交集 67 圖3-3 模糊集合A與B的聯集 68 圖3-4 模糊集合之Core、α-Cut及Support 69 圖3-5 常見模糊數種類 71 圖3-6 標準三角模糊數 72 圖3-7 三角模糊數 73 圖3-8 無異曲線 74 圖3-9 兩條無異曲線相交 75 圖3-10 無異曲線的滿足程度(負斜率) 76 圖3-11 負斜率之無異曲線形狀 77 圖3-12 正斜率之無異曲線形狀 78 圖3-13 無異曲線的滿足程度(正斜率) 78 圖3-14 風險與報酬之效率前緣曲線 79 圖4-1 中小學校舍最適規劃模式發展步驟 88 圖4-2 校舍規劃之無異曲線 92 圖4-3 偏好函數種類 95 圖4-4 建築師偏好函數 96 圖4-5 無異曲線的訂定 97 圖4-6 校舍規劃之效率前緣 99 圖4-7 無異曲線與效率前緣相切 100 圖4-8 地面層單根柱寬度與耐震指標效率前緣 101 圖4-9 單位造價與地面層單根柱寬度效率前緣 102 圖4-10 地面層單根柱寬度規劃偏好設計曲線 103 圖4-11 校舍規劃效率評估 104 圖4-12標竿學習對象及規劃效率改進方向 107 圖4-13標竿學習對象之求法 108 圖5-1 建築師規劃偏好之計算 114 圖5-2 無異曲線方程式之計算 115 圖5-3 臺中市中小學校舍耐震指標及單位造價效率前緣 116 圖5-4 臺中市中小學校舍耐震指標及地面層單根柱寬度效率前緣 116 圖5-5 臺中市中小學校舍地面層單根柱寬度及單位造價效率前緣 117 圖5-6 考量耐震性及經濟性之最適規劃模式計算 118 圖5-7 考量耐震性之最佳地面層單根柱寬度 119 圖5-8 考量經濟性之最佳地面層單根柱寬度 119 圖5-9 臺中市中小學校舍最佳地面層單根柱寬度規劃偏好設計曲線 122 圖5-10 校舍規劃效率之計算 124 圖5-11 三棟校舍規劃效率之計算 127 圖5-12 專家A無異曲線方程式之計算 130 圖5-13 專家B無異曲線方程式之計算 130 圖5-14 專家C無異曲線方程式之計算 131 表目錄 表2-1 中小學校舍建築特色 14 續表2-1 中小學校舍建築特色 15 續表2-1 中小學校舍建築特色 16 表2-2 校舍規劃設計缺失造成之受震破壞狀況 18 續表2-2 校舍規劃設計缺失造成之受震破壞狀況 19 表2-3 校舍基礎與地盤受震破壞狀況 20 表2-4 校舍上部結構受震破壞狀況 21 續表2-4 校舍上部結構受震破壞狀況 22 續表2-4 校舍上部結構受震破壞狀況 23 表2-5 耐震評估及耐震診斷文獻 26 續表2-5 耐震評估及耐震診斷文獻 27 續表2-5 耐震評估及耐震診斷文獻 28 續表2-5 耐震評估及耐震診斷文獻 29 表2-6 耐震指標IS之調整因子 33 表2-7 臺灣地區中小學校舍之耐震指標 34 表2-8 臺灣地區中小學校舍之崩塌地表加速度 36 表2-9 臺中市中小學校舍耐震影響因子 37 表2-10 校舍設計因子主成份分析表 38 表2-11 校舍結構因子主成份分析表 39 表2-12 12項校舍主成份之組成及計算方式 40 表2-13 臺中市中小學校舍資料探勘分群結果 42 表2-14 臺中市中小學校舍耐震因子與耐震指標IS之灰關聯度 43 表2-15 臺中市中小學校舍耐震因子與崩塌地表加速度之灰關聯度 44 表2-16 臺中市中小學校舍耐震評估類神經推論結果 45 表2-17 耐震因子數目變化對耐震評估模式的影響 50 表2-18 案例數目變化對耐震評估模式的影響 52 表2-19 建築物經費預估研究文獻 55 續表2-19 建築物經費預估研究文獻 56 表2-20 臺中市中小學校舍單位造價模糊類神經推論結果 57 表3-1 資料包絡分析法之重要發展歷程 82 表4-1 五種建築師規劃偏好之定義 93 表4-2 不同規劃偏好之標竿學習對象及規劃效率改進方向 109 表5-1 建築師之偏好函數設定 113 表5-2 臺中市中小學校舍效率前緣之迴歸方程式及判定係數R2 117 表5-3 各種規劃偏好之最佳地面層單根柱寬度 121 表5-4 相同校舍不同規劃偏好之規劃效率計算 125 表5-5 五種不同規劃偏好之標竿學習對象 126 表5-6 不同校舍相同規劃偏好之規劃效率計算 128 表5-7 專家驗證過程 129

    參考文獻

    中文部份
    王瀅翠、張嘉祥、陳嘉基、吳建邦, (2006), "既存中小學老舊校舍結構調查研究—以台南縣為例", 建築學報, 第五十八期, pp.1~18。
    內政部建築研究所, (1998),<嘉義瑞里地震建築災害調查報告書>。
    內政部建築研究所, (1999), <鋼筋混凝土建築物耐震能力評估法及推廣>。
    江勁毅、曾國雄, (2000), "新的DEA效率衡量方式: 以模糊多目標規劃建立之效率達成度", 管理學報, 第十七卷, 第二期, pp.369~388。
    杜宜萱、涂耀賢, (2005), <耐震詳評之簡化推垮分析法>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-05-014, pp.143-202。
    李宇豐、曾亮、黃增祥, (2006), "學校建物營建成本管理評估之研究-以台中市小學為例", 中華民國建築學會第十八屆第一次建築研究成果發表會論文集, pp.55-60。中國文化大學,臺北。
    胡雅萍, (2000), <北市公立國民小學營建工程預算編審作業現況之缺失與改善之研究>, 國立交通大學經營管理研究所碩士論文, 新竹。
    財團法人成大建築文教基金會, (1999), <學校建築防震手冊>,內政部建築研究所,台北。
    財團法人成大建築文教基金會, (2000), <九二一集集大地震建築物災害調查分析>, 台南。
    國家地震工程研究中心, (1999), <1999年9月21日台灣中部集集地震初步勘災報告(二)>, 台北。
    許茂雄、張嘉祥、姚昭智、劉玉文, (1993), <台南市國民小學及幼稚園學校建築結構安全評估報告>, 成功大學建築系, 台南。
    許茂雄、郭心怡、鄧世雄, (2002), "RC學校建築與沿街店舖住宅快速耐震診斷", 中國土木水利工程期刊, 第十四卷, 第一期, pp.21-30。
    黃世建、陳正平、王森源、陳正誠、蕭興臺, (1996), "學校建築常見的結構損害現象歸類及補強計劃建議", 內政部建築研究所籌備處專題研究計劃, 計畫編號:MOIS-850016。
    黃世建、陳正誠、李宏仁, (2000), "臺灣熱軋竹節鋼筋之力學性質與耐震韌性設計可行性探討", 結構工程, 第十五卷, 第一期, pp.23-38。
    黃世建、鍾立來、簡文郁、葉勇凱、王翊光、余建維、張撼軍、陳永蒼、周德光、許丁友、邱建國、邱聰智, (2005), <全國中小學校耐震評估與補強施行計畫>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-05-008。
    陳清山、郭章淵、陳信安,(2006), "臺中市中小學校舍耐震因子之研究-以類神經網路為研究方法",中華民國建築學會第十八屆第二次建築研究成果發表會論文集。高苑科技大學,高雄。
    陳清山、陳信安、郭章淵, (2007), "資料探勘應用於臺中市中小學校舍耐震模式之研究", 中華民國建築學會第十九屆第一次建築研究成果發表會論文集, 淡江大學, 臺北。
    陳清山、陳炯堯、陳信安, (2007), "灰色理論應用於臺中市中小學校舍耐震因子之研究", 中華民國建築學會第十九屆第二次建築研究成果發表會論文集, 朝陽科技大學, 臺中。
    陳清山、陳信安、郭章淵, (2008), <以類神經網路及主成份分析法探討臺中市中小學校舍耐震模式>, 行政院國家科學委員會專題研究計畫, 計畫編號: NSC 96-2221-E-324-050。
    陳清山、郭章淵、陳炯堯、林景皓, (2008), "台中市中小學校舍耐震變因之研究─以灰色理論及類神經網路為研究方法", 中華民國建築學會第二十屆第一次建築研究成果發表會論文集,中國科技大學,臺北。
    陳清山、郭章淵、陳炯堯, (2009), "以人工智慧理論探討中小學校舍單位造價-以臺中市為例", 中華民國建築學會第二十一屆第二次建築研究成果發表會論文集,成功大學,臺南。
    陳雅婷、江文卿、黃世建, (2005), <中小學校舍震害及結構特性>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-05-014, pp.1-15。
    陳維東、黃盈樺、陳鴻隆、廖深利, (2006), "學校重建工程預算與合約工期之預測", 技術學刊, 第二十一卷, 第一期, pp. 1-18。
    彭松煒, (2005), <學校建築營運維護階段之成本分析研究-以雲林科技大學為例>, 雲林科技大學營建研究所碩士論文, 雲林。
    詹世杰, (2003), <學校建築成本與工期之預測-以南投縣921校園重建工程為例>, 雲林科技大學營建研究所碩士論文, 雲林。
    張嘉祥、許茂雄、鄭乃綱、陳春杏, (1991), "花蓮明禮國民小學1990年12月13、14日建築震害探討", 結構工程, 第六卷, 第三期, pp.79-102。
    張嘉祥、許茂雄、姚昭智、劉玉文, (1995), "台南市區鋼筋混凝土校舍耐震評估", 建築學報, 第十三期, pp.33~45。
    張嘉祥、賴宗吾、林益民, (1995), "鋼筋混凝土校舍結構系統耐震行為分析及比較", 建築學報, 第十二期, pp.53-69。
    張嘉祥、許茂雄、黃國彰、林國壽, (1995), " RC既有校舍耐震能力與幾個影響參數關係─以台南地區校舍為例", 結構工程, 第十卷, 第三期, pp.23~34。
    張嘉祥、呂國維, (2000), "學校建築結構系統常見之震害型態", 中小學校舍耐震評估與補強, 國家地震工程研究中心, 台北。
    張振華, (2005), <個體經濟學-理論與實務(上)>, 五南圖書出版股份有限公司, 台北。
    廖文義、柴駿甫, (2000), <學校建築耐震能力之簡易評估法及震譜容量法>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-00-042。
    劉玉文、李昌庭, (2000), <建築物功能設計法研定—子計畫:鋼筋混凝土校舍建築之經濟效益研究>, 行政院國家科學委員會補助專題研究計畫, 計畫編號:NSC 89-2625- Z-041- 001。
    劉福勳, (2003), <學校單位營建工程預算編列缺失之探討與因應對策>, 行政院國家科學委員會專題研究計畫, 計畫編號:NSC91-2211-E-216-021。
    蕭江碧, (1999), <九二一集集大地震全面勘災報告-建築物震害調查->, 國家地震工程研究中心研究報告, 計畫編號:NCREE-99-031。
    鍾立來、簡文郁、葉勇凱、黃世建、余建維、張撼軍、陳永蒼、王翊光、周德光、許丁友、邱建國、邱聰智, (2005), <國民中小學典型校舍耐震能力之簡易調查>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-05-007。
    鍾立來、葉勇凱、簡文郁、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、涂耀賢、柴駿甫、黃世建、孫啟祥, (2009), <校舍耐震結構與補強技術手冊(第二版)>, 國家地震工程研究中心專題研究計劃, 計畫編號:NCREE-09-023

    英文部份
    Ahmed, A. S.; Aminah, R. F.; and AbouRizk, S. M. (2007), "Fuzzy numbers in cost range estimating." Journal of construction engineering and management 133 (4): 325-334
    Ajibade, A. A. and Thomas, P. (2008), "The accuracy of pre-tender building cost estimates in Australia." Construction Management and Economics 26: 1257–1269.
    An, S. H., Kim, G. H. and Kang, K. I. (2007), "A case-based reasoning cost estimating model using experience by analytic hierarchy process." Building and Environment 42(7): 2573–2579.
    An, S. H. , Park, U. Y. , Kang, K. I., Cho, M. Y., and Cuo, H. H., (2007), "Application of support vector machines in assessing conceptual cost estimates." Journal of Computing in Civil Engineering 21(4): 259-264.
    Anthony, H., David, J. L., and Margaret, W. E., (1999), "The role of neural networks in early stage cost estimation in the 21st century" COBRA 1999, pp.161-168.
    Ashley, S., (1990), "The battle to build better products." Mechanical Engineering 109:34-38.
    ATC, (1996). "Seismic evaluation and retrofit of concrete buildings", ATC-40 report, Applied Technology Council, Red Wood city, California, SSC 96-01。
    Ayman, H. A. M. (1996), "Construction cost prediction for public school buildings in Jordan." Management and Economics 14 :311-317.
    Bodie, Z., Kane, A. and Marcus, A.J., (2009), Essentials of investments, 8th edition, McGraw-Hill, Boston, MA, U.S.A.
    Carlos, A. Coello Coello (1996) An empirical study of evolutionary techniques for multi-objective optimization in engineering design. PhD thesis, Tulane University, New Orleans, LA.
    Charnes, A., Cooper, W. W. and Rhodes, E., (1978), "Measuring the efficiency of decision making units." European Journal of Operational Research 12(6): 429~444.
    Cheng, M.Y. and Chen, C.S., (2011), "Optimal planning model for school buildings considering the tradeoff of seismic resistance and cost effectiveness: a Taiwan case study." Structural and Multidisciplinary Optimization 43:863-879.
    Colton, J. and Pecht, M. (1991), "An integrated, intelligent design environment." Engineering with Computers 7:11-22.
    Daniel, T.D. and Moncef, K. (2010) "Genetic-algorithm based approach to optimize building envelope design for residential buildings." Building and Environment 45(7): 1574-1581.
    David, J. L.; Margaret W. E.; and Anthony H., (2006), "Predicting Construction Cost Using Multiple Regression Techniques." Journal of construction engineering and management: 750-759.
    Dong, W. and Shah, H. C., (1987), "Vertex methods for computing functions of fuzzy variable." Fuzzy sets and Systems 24: 65-78.
    Dubois, D. and Prade, H., (1978), "The mean value of a fuzzy number." Fuzzy Sets and Systems 24: 279-300.
    Elhag, T. M. S. and Boussabaine, A. H. (1999), "Tender price estimation: Neural networks vs regression analysis", COBRA 1999, pp.114-123.
    Elhag, T.M.S. ,Boussabaine, A.H., and Ballal, T.M.A. (2005), "Critical determinants of construction tendering costs: Quantity surveyors' standpoint." International Journal of Project Management 23: 538-545.
    Evans, G.W. (1984) "An overview of techniques for solving mathematical programs." Management Science 30(11): 1268-1282.
    Farrell, M. J., (1957), "The measurement of productive efficiency.", Journal of the Royal Statistical Society, Series A, General, Vol. 120, part3,pp253~281.
    Hwang, C.L. and Yoon, K., (1981) Multiple attribute decision making: methods and applications, Springer-Verlag, Berlin, Heidelberg.
    Johan, A., (2000), A survey of multi-objective optimization in engineering design. Technical Report LiTH-IKP-R-1097, Department of Mechanical Engineering, Linkoping University, Linkoping, Sweden.
    Kao, C., (2010), "Congestion measurement and elimination under the framework of data envelopment analysis." International Journal of Production Economics 123: 257-265
    Khajehpour, S. and Grierson, D.E., (2003), "Profitability versus safety of high-rise office building." Structural and Multidisciplinary Optimization 25(4): 279-293.
    Kristin, L. W. and Erik, K. A. (1989) "Computations with imprecise parameters in engineering designs: background and theory." ASME Journal of Mechanisms, Transmissions, and Automation in design 111: 616-625.
    Lars, A.K. and Niels, O. (1999) "Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives." Computers and Structures 72: 535-563.
    Liang, G.H. and Wang, M.J., (1991), "A fuzzy multi-criteria decision making method for facility site selection." International Journal of Production Research 29(11): 2313-2330.
    Maged, E.G., Chang, L.M. and Lei, Z. (2005) "Utility-function model for engineering performance assessment." Journal of construction engineering and management 131(5): 558-568.
    Mankiw, N.G., (2008), Principles of Economics, 5th Edition, South-Western College Pub.
    Mansour, N. J., and Mohammad, M. I., (2007), "Cost estimation of structural skeleton using an interactive automation algorithm: A conceptual approach." Automation in Construction 16: 797–805.
    Markowitz, H. M., (1952), "Portfolio Selection." The Journal of Finance 7(1): 77–91.
    McGeorge, J.F. (1988). "Design productivity: a quality problem." Journal of Management in Engineering 4(4):350-362.
    Michael, G., John, J.B., Chen, C. and Ralph, B. (1987) "A comparison of interactive multiple-objective decision making procedures." Computers and Operations Research 14: 97-105.
    Min, L. (2003) Development of multiobjective optimization procedures for seismic design of steel moment frame structures, PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
    Nissen, M.E., Kamel, M.N. and Sengupta, K. (2000) "Integrated knowledge process and systems design." Information Resources Management Journal 13:24-43.
    Peippo, K., Lund, P. D. and Vartiainen, E. (1999) "Multivariate optimization of design trade-offs for solar low energy buildings." Energy and Buildings 29: 189-205.
    Radford, A.D. and Gero, J.S., (1980), "On optimization in computer aided architectural design." Building and Environment 15(2):73-80.
    Rahman, S., Perera, S., Odeyinka, H. and Bi, Y., (2008), "A conceptual knowledge-based cost model for optimizing the selection of materials and technology for building design." In: Dainty, A (Ed) Procs 24th Annual ARCOM Conference, 1-3 September 2008, Cardiff, UK, Association of Researchers in Construction Management, 217-225.
    Saito, T, Abe, S. I. and Shibata, A. (1997), "Seismic damage analysis of reinforced concrete buildings based on statistics of structural lateral resistance", Structural Safety 19(1): 141-151.
    Sheu, M. S., Kubo, T. and Kuo, H. Y.(2004), "Seismic evaluation and its verification of street buildings in Taiwan.", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6,Paper No. 2747.
    Sozen, A. M. (1999). "The third alternative for proportioning of earthquake-resistant buildings in reinforced concrete", International workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, NAPHM, NCREE, pp.5c-1 – 5c-18.
    Tesfamariam, S. and Liu, Z. (2010), "Earthquake induced damage classification for reinforced concrete buildings.", Structural Safety 32: 154–164.
    Tesfamariam, S. and Saatcioglu, M. (2008), "Seismic risk assessment of reinforced concrete buildings using fuzzy rule based modeling.", The 14th World Conference on Earthquake Engineering , October 12-17, Beijing, China.
    Valéria Azzi Collet da Graça, Doris Catharine Cornelie Knatz Kowaltowski, João Roberto Diego Petreche., (2007), "An evaluation method for school building design at the preliminary phase with optimization of aspects of environmental comfort for the school system of the State São Paulo in Brazil." Building and Environment 42 (2):984-999.
    Weimin, W., Radu Z. and Hugues R.(2005) "Applying multi-objective genetic algorithms in green building design optimization." Building and Environment 40 (11): 1512-1525.
    Yakut, A., Tonguç, Y. and Gülkan, P., (2008). "A comparative seismic performance assessment and rehabilitation of existing school buildings.", The 14th World Conference on Earthquake Engineering , October 12-17, Beijing, China.
    Zadeh, L.A., (1965), "Fuzzy sets." Information and Control 8:338-353
    Zadeh, L.A., (1973), "Outline of a new approach to the analysis of complex systems and decision process." IEEE Trans. Syst. Man Cybern. 3(1): 28-44.
    Zekeriya A. and Yusuf A. (2010) "Optimum topology and shape design of prestressed concrete bridge girders using a genetic algorithm." Structural and Multidisciplinary Optimization 41:151–162.
    Zimmermann, H. J., (2001), Fuzzy set theory and its applications. Kluwer publishers.
    Zou, X. (2002) Optimal seismic performance-based design of reinforced concrete buildings. PhD thesis, Hong Kong University of Science and Technology, Hong Kong, China.

    QR CODE