簡易檢索 / 詳目顯示

研究生: 張豐羽
Feng-Yu Zhang
論文名稱: 氣壓肌肉驅動單自由度機械手臂之適應性逆步控制
Adaptive Backstepping Control of a Pneumatic Muscle Actuated 1-DOF Manipulator
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 黃安橋
An-Chyau Huang
楊秉祥
Bing-Shiang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 氣壓肌肉非線性系統逆向步進控制適應性控制
外文關鍵詞: Pneumatic muscle actuator, Nonlinear system, Backstepping algorithm, Adaptive control
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣動肌肉致動器(PMA)是可收縮的或伸展的設備,通過填充充氣氣囊的壓縮空氣來操作。與傳統的氣缸致動器相比,PMA的輕便性和順應性使其適合於輔助人類的運動,並可以在與人互動的機器人中使用。但是,每個硬幣都有兩個面,PMA也有兩個面。 PMA的複雜材料成分以及空氣的可壓縮性帶來了PMA的高度非線性,時變和滯後特性,從而導致在較高頻率下的跟踪性能受到限制。為了解決上述問題,本文提出了一種自適應反步控制器,以實現PMA驅動旋轉系統的精確跟踪性能。
    PMA的非線性通過利用反步算法進行補償,該算法考慮了一個由幾層組成的非線性系統。在不確定的系統參數情況下,PMA的非線性很難用常規的反推控制器來處理,因此引入了自適應控制器。本文設計的自適應控制器利用梯度下降來處理參數錯誤,並自動更新參數。最後,結合積分項,帶有自適應反步控制器的PMA驅動系統可實現精確的跟踪性能,其中在20%的系統參數誤差跟踪1 Hz正弦信號情況下的最大跟踪誤差約為0.39 ◦


    Pneumatic muscle actuators (PMAs) are contractile or extensional devices operated by pressurized air filling a pneumatic bladder. Compare to conventional cylinder actuators, lightweight and compliance property of PMAs make them suitable to assist the movement of human beings and to be utilized in a robot that interacts with a human. However, every coin has two sides, so are PMAs. The complex material composition of PMAs along with compressibility of the air brings about highly nonlinearity, time-varying and hysteresis characteristics of PMAs, leading to tracking performance limitation at a higher frequency. In order to solve the above-mentioned problems, an adaptive backstepping controller is proposed in this thesis to achieve accurate tracking performance of a PMA-actuated rotational system.
    The nonlinearity of PMAs is compensated by utilizing the backstepping algorithm which considers a nonlinear system consisting of several layers. In an uncertain system parameters situation, the nonlinearity of PMAs can hardly be handled with a normal backstepping controller, thus an adaptive controller is introduced. Adaptive controller designed in this article takes advantage of gradient descent to deal with parameter errors, and updates parameters automatically. Combining with the integral term, in the end, the PMA-actuated system with an adaptive backstepping controller achieves a precise tracking performance with 20% system parameters’ error tracking a 1 Hz sinusoidal signal, and the maximum tracking error in this condition is about 0.39 ◦

    Abstract i Acknowledgements ii Contents iii List of Figures iv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 PMA Rotational System Modelling 6 2.1 Rotational System structure . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Single PMA Mathematical Model . . . . . . . . . . . . . . . . . . . 8 2.2.1 Mechanical Model . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 PMA Force Modelling . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Pressure Dynamics . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Flow Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Single PMA Model Validation . . . . . . . . . . . . . . . . . . . . . 16 2.4 Mathematical Model for Rotational System . . . . . . . . . . . . . . 18 2.5 System Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 System Open-loop Analysis . . . . . . . . . . . . . . . . . . . . . . 21 3 Controller Design 24 3.1 Backstepping Control . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Adaptive Backstepping Control . . . . . . . . . . . . . . . . . . . . 28 3.3 Adaptive Backstepping Integral Control . . . . . . . . . . . . . . . 34 4 Simulation Results and Discussion 40 4.1 Certain Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Uncertain Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Conclusion and Future Work 67 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Appendix – List of Symbols 68 References 69

    [1] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems Magzine, vol. 15, no. 1, pp. 40–48, February 1995.
    [2] B. Tondu and P. Lopez, “Modeling and Control of McKibben artificial muscle robot actuators,” IEEE Control Systems Magzine, vol. 20, no. 2, pp. 15–38, April 2000.
    [3] T.-Y. Choi, B.-S. Choi, and K.-H. Seo, “Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety,” IEEE Transactions on Control Systems Technology, vol. 19, no. 4, pp. 832–842, July 2010.
    [4] T.-Y. Choi and J.-J. Lee, “Control of manipulator using pneumatic muscles for enhanced safety,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2815–2825, November 2010.
    [5] K. Xing, J. Huang, Y. Wang, J. Wu, Q. Xu, and J. He, “Tracking control of pneumatic
    artificial muscle actuators based on sliding mode and non-linear disturbance observer,” IET Control Theory and Applications, vol. 4, no. 10, pp. 2058–2070, October 2010.
    [6] S. Hussain, S. Q. Xie, and P. K. Jamwal, “Control of a robotic orthosis for gait rehabilitation,” Robotics and Autonomous Systems, vol. 61, no. 9, pp. 911–919, September 2013.
    [7] T. Hesselroth, K. Sarkar, P. P. v. d. Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 28–38, 1994.
    [8] T. D. C. Thanh and K. K. Ahn, “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network,” Mechatronics, vol. 16, no. 9, pp. 577–587, November 2006.
    [9] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6926–6937, December 2014.
    [10] D. W. Repperger, K. R. Johnson, and C. A. Philips, “Nonlinear feedback controller design of a pneumatic muscle actuator system,” vol. 3, American Control Conference. San Diego, CA: IEEE, June 1999, pp. 1525–1529.
    [11] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 3, pp. 333–339, September 2003.
    [12] H. Aschemann and D. Schindele, “Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 55, no. 11, pp. 3855–3864, November 2008.
    [13] S. Ganguly, A. Gargb, A. Pasricha, and S. Dwivedy, “Control of pneumatic artificial muscle system through experimental modelling,” Mechatronics, vol. 22, no. 8, pp. 1135–1147, December 2012.
    [14] D. Zhang, D. Zhang, and J. Han, “Active model-based control for pneumatic artificial muscle,” IEEE/ASME Transactions on Mechatronics, vol. 64, no. 2, pp. 1686 – 1695, February 2016.
    [15] L. Zhu, X. Shi, Z. Chen, H.-T. Zhang, and C.-H. Xiong, “Adaptive servomechanism of pneumatic muscle actuators with uncertainties,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3329 – 3337, April 2017.
    [16] C.-J. Lin, C.-R. Lin, S.-K. Yu, and C.-T. Chen, “Hysteresis modelling and tracking control for a dual pneumatic artificial muscle system using Prandtl–Ishlinskii model,” Mechatronics, vol. 28, pp. 35–45, June 2015.
    [17] S. Xie, H. l. J. Mei, and Y. Wang, “Hysteresis modelling and trajectory tracking control of the pneumatic muscle actuator using modified prandtl-ishlinskii model,” Mechanism and Machine Theory, vol. 120, pp. 213–224, February 2018.
    [18] C.-P. Chou and B. Hannaford, “Measurement and modeling of mckibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 90–102, February 1996.
    [19] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and adaptive control design, 1st ed. New York: Wiley, 1995.
    [20] P. Ioannou and B. Fidan, Adaptive Control Tutorial, 1st ed. Philadelphia: Society for
    Industrial and Applied Mathematics, 2006.

    無法下載圖示 全文公開日期 2025/03/23 (校內網路)
    全文公開日期 2030/03/23 (校外網路)
    全文公開日期 2040/03/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE