簡易檢索 / 詳目顯示

研究生: 張家錞
Chia-Chun Chang
論文名稱: 適合製備奈米顆粒之聚縮酮高分子 及研究其抗發炎特性
Preparation of Nanoparticles with the Novel Polyketal Polymers and Evaluation of Their Anti-inflammatory Properties
指導教授: 高震宇
Chen-Yu Kao
口試委員: 李曉屏
Shiao-Pieng Lee
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 136
中文關鍵詞: 白楊素聚縮酮抗發炎奈米顆粒
外文關鍵詞: Chrysin, PCADK, Anti-inflammatory, nanoparticles
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白楊素( Chrysin ),被認為與許多疾病的生理機制及訊息傳遞路徑相關,但其呈疏水性且溶解度差與懸浮性不佳等特性,使其臨床應用受限。而聚縮酮( Polyketal ) 已用於包覆親、疏水性與蛋白質藥物運用於心血管、急性發炎與癌症等疾病之功能。故本研究將Chrysin與1,4-Cyclohexanedimethanol ( CDM )及2,2-Diethoxypropane ( DEP )合成為具抗發炎功效之聚縮酮( Polyketal )聚合物—PCADK-Chrysin,藉Chrysin增強聚縮酮抗發炎之功效。
    第一階段,本實驗以不同比例之Chrysin與CDM合成數種新穎聚縮酮,其中Chrysin含量無法計算,分子量約為5600-12500 Dalton,裂解溫度120-195°C,且發現略減CDM之比例可提升分子量,其中PCADK-Chry.15%( CDM:DEP = 0.85:1 )組別分子量及裂解溫度較高。因此第二階段合成PCADK-CDM聚合物藉調整CDM及DEP比例,期以得到較高分子量之PCADK-CDM聚合物,藉此聚合物包覆Chrysin提高Chrysin含量,模擬PCADK-Chrysin NPs分析其抗發炎能力與細胞毒性。
    第二階段,成功合成PCADK-CDM聚合物,其分子量及裂解溫度特性與PCADK-Chrysin趨勢相同,PCADK-CDM85%( CDM:DEP = 0.85:1 )組別分子量及裂解溫度較高,製備出之顆粒型態最完整,包埋率約為59.28%。
    細胞實驗中,PCADK-CDM NPs 具有強烈奈米尺度毒性,Chrysin-PCADK-CDM NPs與純藥皆顯示未能抑制LPS所引起NO之釋放。


    Chrysin, a natural anti-inflammatory compound, exhibits many beneficial effects. However, the hydrophobicity, low-solubility and poor-suspension properties of Chrysin have limited its clinical application.
    In this study, we tried to solve the above problem by the following two methods: first, synthesis of a series of polymers containing Chrysin, and second, encapsulation of Chrysin into the polyketal nanoparticles.
    In the first method, we synthesized several novel polyketal polymers based on different ratios of Chrysin and CDM. The results showed that the contents of Chrysin in these polymers can’t be calculated. The molecular weight of PCADK-Chrysin polymers ranges between 5600 and 12500 Dalton. The decomposition-temperature of PCADK-Chrysin were range between 120-195°C. Among these polymers, PCADK-Chrysin.15% ( CDM:DEP = 0.85:1 ) exhibit the highest decomposition-temperature and molecular weight.
    In the second method, we synthesized PCADK-CDM with the same characteristic of PCADK-Chrysin. PCADK-CDM85%( CDM:DEP = 0.85:1 ) has the highest decomposition-temperature and molecular weight that can obtain the most completed nanoparticles. These PCADK-CDM NPs were used to encapsulate Chrysin, and the encapsulation efficiency is 59.28%.
    However, the results in our in vitro test showed that PCADK-CDM NPs exhibited high cytotoxicity of nano-scale. Both Chrysin-PCADK-CDM NPs and the pure drug could not inhibit LPS induced NO production.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 縮寫表 XVII 第一章 緒論 1 第二章 文獻回顧 2 2.1 發炎 2 2.1.1 發炎反應 2 2.1.2 發炎與癌症 2 2.2 藥物傳輸系統 ( Drug delivery system, DDS ) 3 2.2.1 高分子材料載藥傳輸系統 3 2.3 藥物載體製備-乳化法 4 2.4 聚縮酮 ( Polyketal ) 5 2.5 白楊素 ( Chrysin ) 6 第三章 實驗材料與方法 9 3.1 研究設計 9 3.1.1 實驗設計 9 3.1.2 實驗架構 11 3.2 實驗藥品、試劑與儀器設備 12 3.2.1實驗藥品試劑 12 3.2.2 細胞培養用之藥品試劑 12 3.2.3實驗分析儀器設備 13 3.3 PCADK-Chrysin高分子合成 15 3.4 PCADK-CDM高分子合成 16 3.5 PCADK-Chrysin與PCADK-CDM高分子特性分析 17 3.5.1 PCADK-Chrysin與PCADK-CDM高分子組成分析 17 3.5.2 PCADK-Chrysin與PCADK-CDM高分子分子量分析 18 3.5.3 PCADK-Chrysin與PCADK -CDM高分子裂解溫度分析 19 3.5.4 PCADK-CDM高分子產率評估 19 3.6奈米顆粒載體 ( Nanoparticles ) 製備 20 3.6.1 Blank-PCADK-Chrysin NPs製備 20 3.6.2 Blank-PCADK-CDM NPs製備 20 3.6.3 Chrysin-PCADK-CDM NPs製備 20 3.7顆粒載體特性分析 21 3.7.1 PCADK-Chrysin NPs螢光分析 21 3.7.2 PCADK-CDM NPs粒徑分析 21 3.7.3 PCADK-Chrysin NPs與PCADK-CDM NPs型態觀察 21 3.7.4 PCADK-CDM NPs藥物包覆率分析 22 3.8 細胞培養 23 3.8.1 細胞培養條件與培養液配製 23 3.8.2 凍存細胞活化 23 3.8.3 細胞培養液更換 23 3.8.4 細胞繼代培養 24 3.8.5 細胞計數 24 3.8.6 細胞凍存 25 3.8.7 細胞毒性MTT分析 26 3.8.8 Chrysin-PCADK-CDM NPs抑制細胞一氧化氮產物生成分析 27 第四章 結果 28 4.1 PCADK-Chrysin高分子特性分析 28 4.1.1 PCADK-Chrysin高分子組成分析 28 4.1.2 PCADK-Chrysin高分子分子量分析 32 4.1.3 PCADK Chrysin高分子裂解溫度分析 35 4.2 PCADK高分子特性分析 39 4.2.1 PCADK -CDM高分子組成分析 39 4.2.2 PCADK -CDM高分子分子量分析 43 4.2.3 PCADK-CDM高分子裂解溫度分析 46 4.2.4 PCADK -CDM高分子產率評估 50 4.3 PCADK-Chrysin與PCADK-CDM NPs載體特性分析 51 4.3.1 PCADK-Chrysin NPs螢光分析 51 4.3.2 PCADK-Chrysin NPs與PCADK-CDM NPs粒徑分析 55 4.3.3 PCADK-Chrysin與PCADK-CDM NPs型態觀察 62 4.3.4 PCADK-CDM顆粒藥物包覆率分析 69 4.4 細胞實驗 70 4.4.1 細胞毒性分析 70 4.4.2 抑制細胞一氧化氮產物生成分析 98 第五章 討論 101 5.1 PCADK-Chrysin高分子特性分析 101 5.2 PCADK-CDM高分子特性分析 103 5.3 PCADK-Chrysin NPs與 PCADK-CDM NPs載體特性分析 104 5.4 細胞實驗評估 105 第六章 結論 107 未來實驗建議 108 參考文獻 109 附錄 113

    1. Aster, V.K.A.K.A.J.C., Robbins & Cotran Pathologic Basis of Disease, 9th Edition. 2015.
    2. Hudson, J.D., et al., A proinflammatory cytokine inhibits p53 tumor suppressor activity. Journal of Experimental Medicine, 1999. 190(10): p. 1375-1382.
    3. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-867.
    4. Pietta, P.-G., Flavonoids as Antioxidants. J. Nat. Prod., 2000(63): p. 1035-1042.
    5. Pushpavalli, G., et al., Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur J Pharmacol, 2010. 631(1-3): p. 36-41.
    6. Bae, Y., S. Lee, and S.H. Kim, Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-kappaB. Toxicol Appl Pharmacol, 2011. 254(1): p. 56-64.
    7. Kasala, E.R., et al., Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol Lett, 2015. 233(2): p. 214-25.
    8. Fiore, V.F., et al., Polyketal microparticles for therapeutic delivery to the lung. Biomaterials, 2010. 31(5): p. 810-817.
    9. Leonardi, G.C., et al., Ageing: from inflammation to cancer. Immunity & Ageing, 2018. 15.
    10. Watelet, J.B., et al., Chronic inflammation of upper airways in children: basic principles. B-Ent, 2012. 8: p. 29-40.
    11. Wallace, G.R. and E. Niemczyk, Genetics in Ocular Inflammation-Basic Principles. Ocular Immunology and Inflammation, 2011. 19(1): p. 10-18.
    12. Homey, B., A. Muller, and A. Zlotnik, Chemokines: Agents for the immunotherapy of cancer? Nature Reviews Immunology, 2002. 2(3): p. 175-184.
    13. Scholl, S.M., et al., Anti-Colony-Stimulating Factor-I Antibody Staining in Primary Breast Adenocarcinomas Correlates with Marked Inflammatory Cell Infiltrates and Prognosis. Journal of the National Cancer Institute, 1994. 86(2): p. 120-126.
    14. Maeda, H. and T. Akaike, Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry-Moscow, 1998. 63(7): p. 854-865.
    15. Shacter, E. and S.A. Weitzman, Chronic inflammation and cancer. Oncology-New York, 2002. 16(2): p. 217-+.
    16. Ernst, P.B. and B.D. Gold, The disease spectrum of Helicobacter pylori: The immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annual Review of Microbiology, 2000. 54: p. 615-640.
    17. Kuper, H., H.O. Adami, and D. Trichopoulos, Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 2000. 248(3): p. 171-183.
    18. Kshirsagar, N.A., et al., Drug delivery systems (DDS) & biotechnology products: Clinical trials and regulatory requirements: Experience with product developed in India. Naunyn-Schmiedebergs Archives of Pharmacology, 1998. 358(1): p. R523-R523.
    19. Freiberg, S. and X. Zhu, Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 2004. 282(1-2): p. 1-18.
    20. Rajera, R., et al., Niosomes: A Controlled and Novel Drug Delivery System. Biological & Pharmaceutical Bulletin, 2011. 34(7): p. 945-953.
    21. Chow, C.K.W., D.W. Matear, and H.P. Lawrence, Efficacy of antifungal agents in tissue conditioners in treating candidosis. Journal of Dental Research, 2000. 79: p. 377-377.
    22. Sharma, P. and V. Hamsa, Formulation and evaluation of buccal mucoadhesive patches of terbutaline sulphate. Stp Pharma Sciences, 2001. 11(4): p. 275-281.
    23. Rao, J.P. and K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 2011. 36(7): p. 887-913.
    24. Abhay N. Padalkar1*, S.R.S., Mahesh W. Thube1, Microparticles: an approach for betterment of drug delivery system. International Journal of Pharmaceutics, 2011. 3(1).
    25. Toorisaka, E., et al., Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion. Int J Pharm, 2003. 252(1-2): p. 271-4.
    26. Yang, S.C., et al., Polyketal copolymers: A new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjugate Chemistry, 2008. 19(6): p. 1164-1169.
    27. Yang, S.C., et al., Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem, 2008. 19(6): p. 1164-9.
    28. Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature Materials, 2008. 7(11): p. 863-869.
    29. Lee, S., et al., Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjug Chem, 2007. 18(1): p. 4-7.
    30. Wang, Y., B. Chang, and W. Yang, pH-sensitive polyketal nanoparticles for drug delivery. J Nanosci Nanotechnol, 2012. 12(11): p. 8266-75.
    31. Bajgai, S.P., et al., Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry, 2011. 72(16): p. 2062-7.
    32. Escuredo, O., et al., Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chemistry, 2012. 130(3): p. 671-678.
    33. Mamadalieva, N.Z., et al., Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J Pharm Pharmacol, 2011. 63(10): p. 1346-57.
    34. Mouffok, S., et al., Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab. Records of Natural Products, 2012. 6(3): p. 292-295.
    35. Pasini, F., et al., Buckwheat honeys: screening of composition and properties. Food Chem, 2013. 141(3): p. 2802-11.
    36. Pereira, O.R., et al., Identification of phenolic constituents of Cytisus multiflorus. Food Chemistry, 2012. 131(2): p. 652-659.
    37. Anitha, T.A. and M. Rajadurai, Antioxidative potential of chrysin, a flavone in streptozotocin–nicotinamide-induced diabetic rats. Biomedicine & Preventive Nutrition, 2014. 4(4): p. 511-517.
    38. Zhou, L., et al., Solubility of Chrysin in Ethanol and Water Mixtures. Journal of Chemical and Engineering Data, 2014. 59(7): p. 2215-2220.
    39. Ha, S.K., E. Moon, and S.Y. Kim, Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-kappaB and JNK activations in microglia cells. Neurosci Lett, 2010. 485(3): p. 143-7.
    40. Lim, H.K., et al., Chrysin Increases the Therapeutic Efficacy of Docetaxel and Mitigates Docetaxel-Induced Edema. Integr Cancer Ther, 2016.
    41. Zhang, S., X. Yang, and M.E. Morris, Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol, 2004. 65(5): p. 1208-16.
    42. Cardenas, M., et al., Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorganic & Medicinal Chemistry, 2006. 14(9): p. 2966-2971.
    43. Wang, H.W., et al., Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer, 2007. 120(9): p. 2019-27.
    44. Prangsaengtong, O., et al., Chrysin Inhibits Lymphangiogenesis in Vitro. Biol Pharm Bull, 2016. 39(4): p. 466-72.
    45. Wolfman, C., et al., Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav, 1994. 47(1): p. 1-4.
    46. Izuta, H., et al., Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J Agric Food Chem, 2008. 56(19): p. 8944-53.
    47. Souza, L.C., et al., Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol Biochem Behav, 2015. 134: p. 22-30.
    48. Filho, C.B., et al., Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience, 2015. 289: p. 367-80.
    49. Medina, J.H., et al., Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol, 1990. 40(10): p. 2227-31.
    50. Kandhare, A.D., et al., Evaluation of the neuroprotective effect of chrysin via modulation of endogenous biomarkers in a rat model of spinal cord injury. J Nat Med, 2014. 68(3): p. 586-603.
    51. 周俊良, 以大鼠急性肺損傷模式評估包覆厚朴酚微奈米顆粒之抗發炎能力. 醫學工程研究所, 2014(國立台灣科技大學): p. 台北市.
    52. Schievano, E., et al., An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics, 2012. 8(4): p. 679-690.
    53. Toneli, A.E., NMR Spectroscopy and Polymer Microstructure The Conformational Connection. 1989. 252.
    54. Oh, W.K., et al., Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide. ACS Nano, 2012. 6(10): p. 8516-24.
    55. Zheng, S., et al., Sensitive fluorescence-based method for the rapid determination of polysorbate-80 content in therapeutic monoclonal antibody products. Pharm Dev Technol, 2014: p. 1-5.
    56. Lee, J.Y. and W. Park, Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnology and Bioprocess Engineering, 2015. 20(6): p. 1026-1034.
    57. Lyu, S.Y. and W.B. Park, Production of cytokine and NO by and PBMC in vitro incubation with RAW 264.7 macrophages flavonoids. Archives of Pharmacal Research, 2005. 28(5): p. 573-581.

    QR CODE