簡易檢索 / 詳目顯示

研究生: 吳森統
Sen-tung Wu
論文名稱: 具有低導通損失氬焊機變頻器之研製
Study and Implementation of Inverters for an Arc Welding Machine with Low Conduction Losses
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
王建民
Jian-min Wang
口試委員: 林長華
Chang-hua Lin
王見銘
Chien-ming Wang
歐勝源
Sheng-yuan Ou
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 109
中文關鍵詞: 氬焊機倍流式變頻器耦合電感倍流式變頻器電弧
外文關鍵詞: Arc welding machine, Current-doubler, Coupled-inductor, Arc
相關次數: 點閱:600下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在於研製大電流交直流兩用變頻器以供應氬焊設備,並改良傳統式氬焊設備之缺點,例如效率低、高電壓突波、輸出電流暫態響應較差等。此外,提出兩種架構,分別為倍流式變頻器和耦合電感倍流式變頻器。此兩種變頻器皆採用低導通損失特性的倍流式整流器,可有效的改善效率。其中耦合電感倍流式變頻器的電感是由兩組耦合電感所組成,此架構可將原先儲存在耦合電感的能量保留到下一個週期使用,避免輸出電流換相時造成能量損耗。本論文提出之架構還具有電弧燃燒穩定性佳、輸出電感上無高電壓突波、無須吸收大能量之緩振電路、高功率輸出時效率佳等優點。在控制電路方面,則以微處理器8051配合積體電路來實現。而在功率級部分,最重要也最容易損壞之開關元件則採用絕緣閘雙極性電晶體,文中將詳細介紹其元件特性、驅動電路製作以及大電流系統之雜訊來源與抑制。最後則以實驗結果呈現變頻器之輸出電流以及相關數據。其輸出電流規格為交流0~±100 A、責任週期為50 %且頻率為100 Hz,而直流輸出則可達100 A。


    This dissertation aims to implement the inverters with high output AC/DC current for arc welding machines. The proposed schemes are adopted to improve the disadvantages of the conventional arc welding machines, for examples, low efficiency, high voltage spikes and slower transient response of the output current. Besides, two schemes of the inverters with current doubler rectifier, and coupled-inductor current -doubler rectifier are proposed. These two proposed schemes have merits of low conduction loss which can improve the efficiency significantly. Moreover, the coupled-inductor current-doubler rectifier is composed of two coupled inductors. This structure contributes to preserve the energy stored in the coupled inductor; thus, the preserved energy can be utilized in the next coming cycle. This helps to avoid the energy consumption during the output current commutation. Also, the two proposed schemes have some advantages, like more stable arc inducing, lower voltage spikes on the inductors, and better efficiency at heavy load. Furthermore, there is no need to place snubber circuits. The 8051 microprocessor and the integrated circuits are adopted to implement the control circuit. The characteristics of IGBT (Insulated Gate Bipolar Transistor) and the noise interference for high-current systems are discussed in detail. Finally, the experimental results are demonstrated. The range of the AC output current is from 0 A to 100 A, with a frequency of 100 Hz and a duty cycle 50 %. The maximum DC output current is up to 100 A.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖表索引 VIII 參數符號表 X 第一章、緒論 1 1.1研究動機 1 1.2研究目的 4 1.3論文編排方式 5 第二章、變頻器架構分析與電弧特性介紹 6 2.1變頻器動作原理 6 2.1.1傳統變頻器架構 7 2.1.2倍流式變頻器架構 16 2.1.3耦合電感倍流式變頻器架構 24 2.2回授控制架構與電路設計 36 2.2.1變頻器回授架構 38 2.2.2放大與精密整流電路 39 2.2.3回授補償器電路設計 41 2.3電弧特性與產生過程 43 第三章、電路分析與設計 45 3.1 8051微處理器與邏輯控制電路 45 3.2元件半導體特性 48 3.3緩振電路設計與雜訊來源 51 3.3.1緩振電路設計實例 52 3.3.2雜訊的造成原因與抑制方法 58 3.4開關驅動電路 60 3.5焊接動作原理介紹 64 第四章、實驗波形與討論 66 4.1 Is-Spice電路模擬 67 4.2相關元件規格與系統規格 75 4.3實作相關量測波形 76 4.3.1控制訊號波形 75 4.3.2傳統變頻器輸出波形 77 4.3.3倍流式變頻器輸出波形 79 4.3.4耦合電感倍流式變頻器輸出波形 81 4.3.5傳統變頻器電壓突波與電流波形 83 4.3.6倍流式變頻器電壓突波與電流波形 85 4.3.7耦合電感倍流式變頻器電壓突波與電流波形 86 4.4變頻器效率 87 第五章、結論與未來展望 88 5.1結論 88 5.2未來展望 88 參考文獻 90

    參考文獻
    [1] Y.M. Chae, J.S. Gho, G.H. Choe, W.S. Shin, and J.Y. Choi,“PWMconverter-inverter arc welding machine using new type N.C.T,” inProc. of IEEE PESC 1998, pp. 1636-1641, May 1998.
    [2] L. Zhao, X. Bailu, W. Shuhui, D. Shanxu, andK. Yong, “The sliding mode control for arc welding inverter power source,” in Proc. ofIEEE ICIEA 2008, pp. 1100-1104, Jun. 2008.
    [3] T.J. Kim, G.H. Rim, and C.U. Kim, “Development of a power supply forthe pulse MIG arc welding with the changes of output current polarity,”in Proc. of IEEE IECON 2004, pp. 953-956, Nov. 2004.
    [4] M. Thamodharan, H. P. Beck,and A. Wolf, “Steady and pulsed direct current welding with a single converter,” Welding Journal, vol. 78, no.3, pp. 75.s-79.s, March 1999.
    [5] R. L. O’Brien, Welding Handbook, 8th ed., vol. 2, American Welding Society, Miami, FL, 1991.
    [6] K. Andersen, G. E.Cook, G. Karsai, and K. Ramaswamy, “Artificial neural networks applied to arc welding process modeling and control,”IEEE Trans. Ind. Application, vol. 26, no. 5, pp. 824−830, Sept./Oct. 1990.
    [7] K. Ohshima, M. Yamamoto, T. Tanii, and S. Yamane, “Digital control of torch position and weld pool in MIG welding using image processing device,” IEEE Trans. Ind. Application, vol. 28, no. 3, pp. 607−612, May/June 1992.
    [8] Y. Liu, G. E. Cook, R. J. Barnett, and J. F. Springfield, “PC-based arc ignition and arc length control system for gas tungsten arc welding,”IEEE Trans. Ind. Application., vol. 28, no. 5, pp. 1160−1165, Sept./Oct. 1992.
    [9] M. Borage, S. Tiwari, and S. Kotaiah, “LCL-T resonant converterwith clamp diodes: a novel constant-current power supply with inherentconstant-voltage limit,” IEEE Trans. Ind. Electron., vol. 54, no. 2,pp. 741–746, Apr. 2007.
    [10] H. Pollock, and J. O. Flower, “Series-parallel load-resonant converter forcontrolled-current arc welding power supply,” IEE Proc.-Electr. PowerAppl., vol. 143, no. 3, May 1996.
    [11] L. Malesani, P. Mattavelli, L. Rossetto, P. Tenti, W. Marin, and A.Pollmann, “Electronic welder with high-frequency resonant inverter”IEEE Trans. on Industry Applications, vol. 31. Issue 2, pp. 273–279,March/April 1995.
    [12] T.F. Wu, H.P. Yang, and C.M. Pan, “Analysis and design of variable frequency and phase-shift controlled series resonant converter applied for electric arc welding machines,” in Proc. of IEEE IECON2005, pp. 656-661, Nov. 2005.
    [13] J. F. Liu, K. W.E. Cheng, and Z. Jun, “A unified phase-shift modulation for optimized synchronization of parallel resonant inverters in high frequency power system,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3232–3247, July, 2014.
    [14] X.D. Li and Bhat, A.K.S., “A utility-interfaced phase-modulated high-frequency isolated dual lcldc/acconverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1008–1019, Feb. 2014.
    [15] Hallworth, M., Potter, B.A., and Shirsavar, S.A., “Analytical calculation of resonant inductance for zero voltage switching in phase-shifted full-bridgeconverters,” IET Power Electron., vol. 6, no. 3, pp. 523–534, Mar. 2013.
    [16] J. M. Zhang, J.F. Wang, G.X. Zhang, and Z.M. Qian, “A hybrid driving scheme for full-bridge synchronous rectifier in LLC resonant converter,” IEEE Trans. Power Electronics., vol. 27, no. 11, pp. 4549–4561, Nov. 2012.
    [17] V. Esteve, J. Jordan, E. Sanchis-Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. Ferreres, “Improving the reliability of series resonant inverters for induction heating applications,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2564 – 2572, May 2014.
    [18] Dudrik, J.and Trip, N.-D., “Soft-switching ps-pwmdc–dcconverter for full-load range applications,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2807–2814, Aug. 2010.
    [19] Navarro-Crespin, A., Casanueva, R., and Azcondo, F.J., “Performance improvements in an arc-welding power supply based on resonant inverters”, IEEE Trans. on Industry Applications, vol. 48. Issue 3, pp. 888–894, May-June 2012.
    [20] K.Morimoto, T. Doi, H. Manabe, N.A. Ahmed, H.W Lee, and M. Nakaoka, “Advanced high power dc-dcconverter using novel type half-bridge soft switching pwminverter with high frequency transformer for arc welder”, Proceeding of IEEE-PEDS, pp113-118, November, 2005.
    [21] Duke, R.M., andHenderson, K.C., “An ac welder controller with electronic arc initiator”, Proceeding of IEEE-IECON, pp593-597, Oct., 1988
    [22] Y. K. Lo, J. M. Wang, and K. J. Pai,” Improved commutation method for a full-bridge current-source inverter,”IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 961–963, Jan. 2008.
    [23] J.Borka, and M.Horvath, “A new, simple, low-cost, modular arrangement of high power factor for both dc and ac welding,”inProc. ofIEEE ISIE '99, vol. 2, pp. 757-761, July, 1999.
    [24] Y. K. Lo and J. M. Wang,“Current-regulated inverters with an output coupled inductor for ac arc welding machines,” IET Power Electronics., vol. 1, no. 4, pp. 445-454, Dec. 2008.
    [25] Lucas, W. and Murch, M.G., “Arc reignition characteristics when welding with sine-wave and square-wave power supplies,” IET electric Power Applications., vol. 134, no. 6, pp. 348 - 354, Nov. 1987.
    [26] J. M. Wang, S. T. Wu, S. C. Yen, and H.J. Chiu,” A simple inverter for arc-welding machines with current doubler rectifier” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5278–5281, Nov. 2011.
    [27] J.M. Wang, S.T. Wu, and H.J. Chiu, “A novel energy-retaining inverterfor ac arc welding machines,” Int. J. Circuit Theory Appl., vo40. no. 2, pp. 107–126, Feb. 2012.
    [28] J.M. Wang, S.T. Wu, Y. F. Jiang, and H.J. Chiu,”A dual-mode controller for the boost pfcconverter” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 369 - 372, Jan. 2011.
    [29] J. X. He, B. W. Williams, S. J. Finney, and Z. Qian, “New energy recovery snubber configurations for igbt inverters,”inProc. Of IEEE Power Electronics and Variable Speed Drives, pp. 54-59, 1996.
    [30] 王順忠譯,“電力電子學”,東華書局,2002。
    [31] 謝俊明,“不銹鋼電弧焊燻煙暴露危害與評估技術之檢討與建議”,行政院勞工委員會勞工安全衛生研究所,1999。
    [32] MITSUBISHICM150DY-12Hdatasheet,http://pdf1.alldatasheet.com/ t-pdf/view/142/MITSUBISHI/CM150DY-12H.html.
    [33] Agilent Technologies HCPL-3120datasheet,http:// alldatasheet.co m/datasheet-pdf/view/82098/HP/HCPL3120.html.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE