簡易檢索 / 詳目顯示

研究生: 姚竣仁
Chun-jen Yao
論文名稱: 太陽能高強度放電路燈系統之研製
Design and Implementation of a Photovoltaic High-Intensity-Discharge Street Lighting System
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
口試委員: 劉添華
none
劉益華
none
梁從主
none
陳建富
none
陳耀銘
none
陳良瑞
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 170
中文關鍵詞: 太陽能高強度放電路燈單端初級電感轉換器最大功率追蹤電子安定器功率因數修正電磁干擾
外文關鍵詞: Photovoltaic High-Intensity-Discharge Street Lig, Single-Ended Primary Inductance Converter, Maximum Power Point Tracking, Electronic Ballast, Power Factor Correction, Electromagnetic Interference
相關次數: 點閱:438下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能路燈系統已經普遍使用於許多開發中國家,應用在新開闢都會市區道路中,具有高度經濟性。本論文研究一種市電併聯太陽能高強度氣體放電路燈系統:太陽能電池在日間對蓄電池充電,採用所提出的SEPIC太陽能充電器,在太陽能電池電壓大範圍變動下,依然可以達到高最大功率點追蹤準確度以及高充電效率;在夜間,儲存於蓄電池內的能量藉由電子安定器電路來驅動路燈。為了避免電池過度放電,一種耦合電感SEPIC 功率因數修正轉換器從交流市電端繼續提供電能,市電端具有高輸入功因特性。對於本文所研究採用邊界模式功率因數修正控制IC L6561之功率因數修正電路,不需傳統邊界模式功率因數修正電路中所需的大輸入濾波器。本論文所提出的太陽能高強度放電路燈系統,具有高功率密度、簡單電路以及長使用壽命等優點,文中並詳細分析及討論其電路工作原理及設計考量,一部雛型電路被實現與測試,其實驗結果與電磁干擾設計驗證了所提出方法的可行性。


    The photovoltaic (PV) street lighting systems have been used in many developing countries. They are highly economical when used in newly-built urban road sections. This dissertation presents a grid-tied PV high-intensity-discharge (HID) street lighting system. During daytime, the battery is charged by a PV panel. With the proposed Single-ended Primary Inductance Converter (SEPIC) PV charger, high maximum power point tracking (MPPT) accuracy and high efficiency battery charging can be achieved under a wide range of PV panel voltage variation. At night, the solar energy stored in the battery is released to drive the street lights by an electronic ballast circuit. A coupled inductor SEPIC power factor correction (PFC) converter is also used to draw energy from the AC-line utility to prevent the battery from over-discharging. High input power factor can be achieved at the AC-line utility side. Large input filter in a conventional transition mode (TM) PFC circuit is not needed for the studied PFC circuit using a TM PFC control IC L6561. The proposed PV HID street lighting system has the advantages of high power density, simple circuit, and long lifetime. The operating principles and design considerations for the proposed lighting system are described and analyzed in details. Experimental results and electromagnetic interference (EMI) designsfor a laboratory prototype are shown to verify the feasibility of the proposed method.
    Keywords:Photovoltaic High-Intensity-Discharge Street Lighting System, Single-Ended Primary Inductance Converter, Maximum Power Point Tracking, Electronic Ballast, Power Factor Correction, Electromagnetic Interference

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 符 號 索 引 VI 圖 目 錄 XVIII 表 目 錄 XXIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與架構 2 1.3 論文內容大綱 4 第二章 太陽能電池與最大功率點追蹤技術 6 2.1 太陽能發電系統概論 6 2.2 太陽能電池簡介 8 2.2.1 太陽能電池原理 8 2.2.2 太陽能電池電氣特性 11 2.2.3 太陽能電池種類 13 2.3 最大功率點追蹤技術 19 第三章 電量檢測與充電策略 26 3.1 鉛酸電池簡介 26 3.2 電量檢測方法 28 3.3 常用充電策略 31 3.4 混合雙模式充電策略 35 第四章 高強度放電燈特性 41 4.1 氣體放電燈發光原理 41 4.2 HID燈發光特性 42 4.3 音頻共振現象 44 4.4 HID燈電氣特性 45 第五章 系統架構與硬體電路設計 48 5.1 整體系統之架構 48 5.2 太陽能充電電路 49 5.3 數位電子安定器電路 54 5.4 市電供電模式 61 5.5 週邊電路設計 65 第六章 數位化控制系統 69 6.1 系統控制流程 69 6.2 充電模式控制 75 6.3 放電模式控制 86 6.4 市電供電模式控制 94 第七章 實驗結果與討論 96 7.1 最大功率追蹤與混合雙模式充電 97 7.2 高強度放電燈數位電子安定器 105 7.3 SEPIC功率因數修正轉換器 111 第八章 電磁干擾雜訊量測與抑制 114 8.1 電磁相容簡介 114 8.2 傳導性電磁干擾 115 8.3 輻射性電磁干擾 117 8.4 電磁干擾分析與設計 119 8.5 電磁干擾量測與結果 122 第九章 結論與未來展望 130 9.1 結論 130 9.2 未來展望 131 參 考 文 獻 134

    [1] D.E. Carlson, “Fossil Fuels, the Greenhouse Effect and Photovoltaics,” IEEE Photovoltaic Conference, Vol. 1, pp. 1-7, Dec. 1989.
    [2] Mohibullah, Imdadullah, and I. Ashraf, “Estimation of CO2 Mitigation Potential through Renewable Energy Generation,” IEEE PECon’06, pp.24-29, Nov. 2006.
    [3] S. R. Bull, “Renewable Energy Today and Tomorrow,” Proceedings of the IEEE, Vol. 89, pp. 1216-1226, 2001.
    [4] D. Bica and D. Cristian, “Photovoltaic Laboratory for Study of Renewable Solar Energy,” Universities Power Engineering Conference, pp.1-5, Sept. 2008.
    [5] N. G. Dhere and R. G. Dhere, “Thin-film Photovoltaics,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 4, pp. 1208 - 1214, July 2005.
    [6] Edese, S. A. Martin, E. Aguila, R. Komornicki, and Sergio, “Solar Lighting System,” 18th International Conference on Electricity Distribution, pp. 1-5, June 2005.
    [7] B. Sahan, A. N. Vergara, N. Henze, and A. Engler, P. A. Zacharias, “Single-Stage PV Module Integrated Converter Based on a Low-Power Current-Source Inverter,” IEEE Trans. Industrial Electronics, vol. 55, no. 7, pp. 2602-2609, July. 2008.
    [8] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions,” IEEE Trans. Industrial Electronics, vol. 55, no. 7, pp. 2629-2637, July. 2008.
    [9] M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. Portillo-Guisado, M.A.M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002-1016, June. 2006.
    [10] R.B. Darla, “Development of Maximum Power Point Tracker for PV Panels Using SEPIC Converter,” Telecommunications Energy Conference, pp. 650 - 655, Sept. 30-Oct. 4 2007.
    [11] H. J. Chiu and S. J. Cheng, “Design Considerations of an SEPIC PFC Converter for Driving Multiple Lighting LED Lamps,” International Journal of Circuit Theory and Applications, Vol. 37, no. 8, pp. 928-940, Oct. 2009.
    [12] Wu, L. B., Z. M. Zhao, J. Z. Liu, and J. Wang, “Implementation of a Stand-alone Photovoltaic Lighting System with Maximum Power Point Tracking and High Pressure Sodium Lamp,” IEEE Proceedings of The 5-th International Conference on Power Electronics and Drive Systems, Vol. 2, pp. 1570-1573, 2003.
    [13] J. Zhou, Z. Wang, and N. Yang, “Research on Inverting Control of PV Ggrid-connected LED Street Lighting System,” Information Networking and Automation, vol. 2, pp. 94-96, 2010.
    [14] J. M. A. Myrzik and M. Calais, “String and Module Integrated Inverters for Single-phase Grid Connected Photovoltaic Systems-a Review,” IEEE Bologna Power Tech Conference, vol. 2, pp. 23-26, June. 2003.
    [15] V. Quaschning, “Understanding Renewable Energy Systems,” Carl Hanser Verlag GmbH & Co KG, London, 2005.
    [16] S. L. Ho, K. S. Kwan, C. L. Tsay, and L. M. Wu, “Solar Power Converter with Maximum Power Tracking,” Journal of Electrical Power Engineering, pp. 787-791, 1996.
    [17] Siemens, “Solar Module SP75,” Datasheet, 1998.
    [18] Z. Salameh, F. Dagher, and W.A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,” Solar Energy, vol. 46, no. 1, pp. 278-282, 1991.
    [19] S. L. Ho, K. S. Kwan, C. L. Tsay, and L. M. Wu, “Solar Power Converter with Maximum Power Tracking,” Journal of Electrical Power Engineering, pp. 787-791, 1996.
    [20] Y. Jung, J. So, G. Yu, and J. Choi, “Improved Perturbation and Observation Method (IP&O) of MPPT Control for Photovoltaic Power Systems,” IEEE Photovoltaic Specialists Conference, pp. 1788-1791, Jan. 2005.
    [21] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
    [22] C. T. Pan, J. Y. Chen, C. P. Chu, and Y. S. Huang, “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” IEEE Transactions on Industrial Electronics, Vol. 1, pp. 390-393, 1999.
    [23] J. A. Jiang, T. L. Huang, Y. T. Hsiao, and C. H. Chen, “Maximum Power Tracking for Photovoltaic Power System,” Journal of Science and Engineering, vol. 8, no. 2, pp. 147-153, 2002.
    [24] H. Kobayashi, K. Takigawa, E. Hashimoto, A. Kitamura, and H. Matsuda, “Method for Preventing Islanding Phenomenon on Utility Grid with a Number of Small Scale PV Systems,” Conference Record of IEEE Photovoltaic Specialists Conference, vol. 1, pp. 695 - 700, 1991.
    [25] H. Jinbo, K. Koike, Y. Suzuki, and H. Yoshino, “High-capacity Small Sealed Lead-Acid Battery,” National Technical Report, vol. 37, no. 1, pp. 78-83, Feb.1991.
    [26] N. Hoshihara, Y. Suzui, N. Takami, K. Takahashi, K. Yamasaka, M. Toyoda, M. Tanahashi, and Y. Murakami, “Heavy-Duty Maintenance-Free Automobile Battery,” National Technical Report, vol. 37, no. 1, pp. 84-93, Feb. 1991.
    [27] GP12260 Specifications, CSB Battery LTD., 2008。
    [28] J. H. Aylor, A. Thieme, and B. W. Johnson, “A Battery State-of-charge Indicator for Electric Wheelchairs,” IEEE Transactions on Industrial Electronics, vol. 39, pp. 398-409, 1992.
    [29] P. Sabine, P. Marion, and A. Jossen, “Methods for State-of-charge Determination and Their Applications,” Journal of Power Sources, Vol. 96, No. 1, pp. 113-120, June 2001.
    [30] T. Yanagihara and A. Kawamure, “Residual Capacity Estimation of Sealed Lead-acid Batteries for Electric Vehicles,” IEEE International Conference on the Power Conversion, pp. 943-946, 1997.
    [31] S. Sato and A. kawamura, “A New Estimation Method of State-of-charge Using Terminal Voltage and Internal Resistance for Lead-Acid Battery,” IEEE International Conference on the Power Conversion, vol. 2, pp. 565-570, 2002.
    [32] O. Caumont, et al, “Energy Gauge for Lead-Acid Batteries in Electric Vehicles”, IEEE Transactions on Energy Conversion, Vol. 15, No. 3, pp. 354-360, Sep. 2000.
    [33] L. R. Chen, “A Design of an Optimal Battery Pulse Charge System by Frequency-varied Technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398-405, Feb. 2007.
    [34] J. A. Martin, Gonzalez, M. A. Perez, F. J. Ferrero, and J. Diaz, “A Microcontroller-based Intelligent Fast-charger for Ni-Cd and Ni-MH Batteries in Portable Applications,” Proceedings of the 24th Annual Conference of the IEEE, vol. 3, pp. 1638-1643, 1998.
    [35] H. A. Kiehne, “Battery Technology Handbook,” Expert Verlag, Germany, 1989.
    [36] M. Coleman, W. G. Hurley, and C. K. Lee, “An Improved Battery Characterization Method Using a Two-pulse Load Test,” IEEE Transactions on Energy Cnoversion, vol. 23, no. 2, pp. 708-713, June 2008.
    [37] P. M. Hunter and A. H. Anbuky, “VRLA Battery Rapid Charging under Stress Management,” IEEE Transactions on Industrial Electronics, vol. 50, no. 6, pp. 1229-1237, Dec. 2003.
    [38] R. C. Cope and Y. Podrazhansky, “The Art of Battery Charging,” Proceeding of the 14th Annual Battery Conference on Applications and Advances, pp. 233-235, 1999.
    [39] C. C. Hua and M. Y. Lin, “A Study of Charging Control of Lead-acid Battery for Electric Vehicles,” IEEE International Symposium on Industrial Electronics, pp. 135-140, Dec. 2000.
    [40] E. M. Valeriote, T. G. Chang, and D. M. Jochim, “Fast Charging of Lead-acid Batteries”, Battery Conference on Applications and Advances, pp. 33-38, 1994.
    [41] 蔡袓泉、陳大華、王國富、劉躍群,“光源電器原理及其應用”,河南科學技術出版社。
    [42] Data Source:www.autoworld.com.cn/mantan/dianqi/nlamp.htm
    [43] 莫清賢、林再福、林憲男,“最像日光的燈:氙燈”,電力電子技術雙月刊,pp. 19-25,1999年4月。
    [44] M. S. Shen, Z. M. Qian, and F. Z. Peng, “Design of a Two-Stage Low-Frequency Square-Wave Electronic Ballast for HID Lamps,” IEEE Transactions on Industry Applications, Vol. 39, pp. 424-430, March-April 2003.
    [45] K. Lee and B. H. Cho, “Design and Analysis of Automotive High Intensity Discharge Lamp Ballast using Micro Controller Unit,” IEEE Transactions on Power Electronics, Vol. 18, pp. 1356-1364, Nov. 2003.
    [46] N. H. Ohsato, H. Ohguchi, T. Shimizu, G. Kimura, and H. Takagi, “New Type of Ballast for HID Lamps Using Distributed Constant Line,” PCC’97, Vol. 2, pp. 987-990, 1997.
    [47] A. Reatti, “Low-Cost High Power-Density Electronic Ballast for Automotive HID Lamp,” IEEE Transactions on Power Electronics, vol. 15, no. 2, March 2000, pp. 361-368, Mar. 2000.
    [48] Y. X. Hu, “Analysis and Design of High-Intensity-Discharge Lamp Ballast for Automotive Headlamp,” M. S. Thesis, Virginia Polytechnic Institute and State University, 2001.
    [49] OSRAM Customer Information, “Metal Halide Lamps for Automotive,” 2000.
    [50] PHILIPS, “UBA2030T Full bridge driver IC ,” Datasheet, Sep. 2002.
    [51] LEM, “Voltage Transducer LV 25-P,” Datasheet, Nov. 1998.
    [52] LEM, “Current Transducer LA 55-P,” Datasheet, July 1998.
    [53] LEM, “Current Transducer LA 100-P,” Datasheet, July 1998.
    [54] Agilent, “2.5 Amp Output Current IGBT/MOS Gate Drive Optocoupler HCPL-3120,” Datasheet, 2001.
    [55] Agilent, “2.0 Amp Output Current IGBT/MOS Gate Drive Optocoupler HCPL-3180,” Datasheet, 2003.
    [56] Texas Instruments, “TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, and TMS320F2801xDSPs Data Manual,” Datasheet, 2003.
    [57] Electroninvest, “JM164A,” Datasheet, 2008.
    [58] I. K. Lee, S. J. Choi, K. C. Lee, and B. H. Cho, “Modeling and Control of Automotive HID Lamp Ballast,” IEEE International Conference on Power Electronics and Drive Systems, Vol. 1, pp. 506-510, July 1999.
    [59] STMicroelectronics, “L6561,” Datasheet, 2003.
    [60] H. W. Ott, “Noise Reduction Techniques in Electronic Systems,” John Wiley & Sons, 1988.
    [61] C. R. Paul, “Introduction to Electromagnetic Compatibility,” John Wiley & Sons, 1992.
    [62] H. J. Chiu, Y. K. Lo, C. J. Yao, K. H. Wu, T. H. Wang, and C. C. Chuang, “Electromagnetic Interference Suppression Techniques for Compact LED Lamp Drivers,” Journal of Circuits, Systems, and Computers, vol. 19, no. 5, pp. 1131-1139, Aug. 2010.
    [63] H. J. Chiu, T. F. Pan, C. J. Yao, and Y. K. Lo, “Automatic EMI Measurement and Filter Design System for Telecom Power Supplies,” IEEE Trans. on Instrumentation and Measurement, vol. 56, no. 6, pp. 2254-2261, Dec. 2007.
    [64] C. C. Song, C. J. Yao, S. W. Chen, and D. C. Liaw, “Study of Circuit Design and EMI Suppression for Automotive HID Lamp Ballasts,” Journal of Power Electronics, Taiwan Power Electronics Association, Vol. 5, No. 3, pp. 29-38, May, 2007.
    [65] C. C. Song, C. J. Yao, C. T. Lin, and D. C. Liaw, “EMI Testing and Improvements of Electronic Ballasts for Automotive HID Lamps,” IEEE Asia Pacific Symposium on EMC, Taipei, Taiwan, pp. 250-255, Dec.6-9, 2005.

    無法下載圖示 全文公開日期 2016/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE