簡易檢索 / 詳目顯示

研究生: 林承憲
Cheng-Xian Lin
論文名稱: 應用域對抗神經網路於感應馬達跨域故障診斷
Cross-Domain Fault Diagnosis of Induction Motors Using Domain-Adversarial Neural Networks
指導教授: 張宏展
Hong-Chan Chang
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
郭政謙
Cheng-Chien Kuo
黃維澤
Wei-Tzer Huang
李俊耀
Chun-Yao Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 感應馬達故障診斷轉移學習域對抗神經網路跨域
外文關鍵詞: induction motor, fault diagnosis, transfer learning, domain-adversarial neural networks, cross-domain
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感應馬達在各式系統中扮演著重要的角色,因此感應馬達的維護與保養直接地影響系統經濟效益及人員安全性,希望能利用馬達所得訊號,達到提早發現故障,並且透過訊號所含有之特徵得知故障種類,進而提前安排維修、減少維護時間、減少事故發生。故障診斷系統由三步驟組成:資料蒐集、特徵擷取和故障分類,資料蒐集上受感測器準確度影響,能越少雜訊與誤差越好,特徵擷取在傳統機器學習上須仰賴專家提取故障特徵,在機器學習的演進下,延伸發展出深度學習,透過神經網路自動提取訊號特徵,神經網路可利用所提取之特徵進行分類,而現行趨勢導向轉移學習,希望能藉由不同領域學習的成果應用到其他領域,達到轉移應用之成效。
    本論文設計了四種故障狀態感應馬達類型,包含定子故障、轉子故障、軸承故障、不對心故障,並採用了感應馬達在五種負載狀態下之電流與振動訊號,利用原始時域訊號重新排列製圖後分別輸入兩種
    傳統深度學習模型(卷積神經網路、循環神經網路)與兩種轉移學習模型(深度域混淆、域對抗神經網路)進行準確度比較與結果分析,選出最佳模型後進行各負載之跨域分析。最後得到重要結果為使用感應馬達之振動訊號,並利用轉移學習之域對抗神經網路方法進行故障診斷可以達到各域都有相當高之準確度。


    Induction motors play a crucial role in various systems. Therefore, the maintenance of induction motors directly affects the economic efficiency of the system and personnel safety. Motor signals can be used for early identification of motor fault, with the fault types determined according to the signal features. This allows for arrangement of preemptive maintenance, reduces maintenance time, and reduces accidents. Fault diagnosis involves the following three steps: data collection, feature extraction, and fault classification. The accuracy of the sensor determines the quality of data collection; a small amount of noise and error results in high-quality data collection. Traditional machine learning for feature extraction relies on fault features extracted by experts. Developed upon the advances in machine learning, deep learning enables automatic extraction of signal features through a neural network, which can perform classification according to the extracted features. Transfer learning, which shows growing predominance in the development of machine learning, is aimed at applying the learning results for a field to other ones.
    This study designed four types of induction motor fault, namely stator fault, rotor fault, bearing fault, and misalignment fault. The current and vibration signals of the induction motor at five different loads were used to rearrange and map the original time-domain signals. The data were entered into two traditional deep learning models (i.e., convolutional neural network and recurrent neural network) and two transfer learning models (i.e., deep domain confusion and domain-adversarial neural network) for accuracy comparison and result analysis. After the optimal model was determined, cross-domain analysis of each load was performed. According to the study result, high accuracy was achieved by the fault diagnosis method that involved the use of the induction motor’s vibration signals and the transfer-learning-based domain-adversarial neural network in all
    domains.

    中文摘要.....................................................................................................I Abstract.................................................................................................... II 誌謝..........................................................................................................III 目錄..........................................................................................................IV 圖目錄.................................................................................................... VII 表目錄........................................................................................................X 第一章 緒論.............................................................................................. 1 1.1 研究背景與動機......................................................................1 1.2 研究方法與架構......................................................................5 1.3 文獻探討 .................................................................................7 1.4 章節概述 .................................................................................9 第二章 故障診斷技術與馬達故障模型設計....................................... 10 2.1 前言.......................................................................................10 2.2 傳統深度學習........................................................................11 2.3 轉移學習 ...............................................................................11 2.4 馬達常見之故障類型............................................................13 2.5 馬達故障模型設計................................................................14 2.5.1 定子故障模型 ......................................................................................14 2.5.2 轉子故障模型 ......................................................................................15 2.5.3 軸承故障模型 ......................................................................................15 2.5.4 不對心故障模型 ..................................................................................16 V 2.6 數據量測方法........................................................................17 2.6.1 實驗平台架構 ......................................................................................17 2.6.2 數據量測流程 ......................................................................................18 2.6.3 訊號量測 ..............................................................................................19 2.7 馬達故障診斷技術流程........................................................22 第三章 深度學習模型之探討 ............................................................... 23 3.1 前言.......................................................................................23 3.2 傳統深度學習........................................................................25 3.2.1 卷積神經網路(Convolutional Neural Network)..................................25 3.2.2 循環神經網路(Recurrent Neural Networks) .......................................29 3.3 轉移學習 ...............................................................................31 3.3.1 深度域混淆神經網路(Deep Domain Confusion)................................31 3.3.2 域對抗神經網路(Domain-Adversarial Neural Networks) ..................33 第四章 實驗案例分析與結論 ............................................................... 35 4.1 資料生成 ...............................................................................35 4.2 實驗案例一:電氣與振動訊號比較.....................................42 4.3 實驗案例二:傳統深度學習與轉移學習比較.....................43 4.4 實驗案例三:各領域訓練結果 ............................................45 4.5 結果與討論............................................................................47 第五章 結論及未來展望 ....................................................................... 49 5.1 結論.......................................................................................49 5.2 未來研究方向........................................................................50 VI 參考文獻.................................................................................................. 51

    [1] D. Basak, A. Tiwari and S. P. Das, "Fault diagnosis and condition
    monitoring of electrical machines-a review," 2006 IEEE
    International Conference on Industrial Technology, pp. 3061-3066,
    2006.
    [2] P. Zhang, Y. Du, T.G. Habetler and B. Lu, "A survey of condition
    monitoring and protection methods for medium-voltage induction
    motors," IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 34-46, 2011.
    [3] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A. K. Nandi, "Applications of
    machine learning to machine fault diagnosis: A review and
    roadmap," Mech. Syst. Sig. Process, p. 106587, 2020.
    [4] L. Guo, Y. Lei, S. Xing, T. Yan and N. Li, "Deep convolutional
    transfer learning network: A new method for intelligent fault
    diagnosis of machines with unlabeled data," IEEE Trans. Ind.
    Electron., vol. 66, no. 9, pp. 7316-7325, Sep. 2018.
    [5] F. Lv, C. Wen, Z. Bao and Meiqin Liu, "Fault diagnosis based on
    deep learning," American Control Conference (ACC), 2016.
    [6] C. Zhang, L. Xu, X. Li and H. Wang, "A method of fault diagnosis
    for rotary equipment based on deep learning," Prognostics and
    System Health Management Conference (PHM-Chongqing), pp.
    958-962, 2018.
    [7] D. Choi, J. Han, S. Park and S. Hong, "Comparative Study of CNN
    and RNN for Motor fault Diagnosis Using Deep Learning," 2020
    IEEE 7th International Conference on Industrial Engineering and
    Applications (ICIEA), pp. 693-696, 2020.
    [8] Q. Zhang, J. Lin, H. Song and G. Sheng, "Fault identification based
    on PD ultrasonic signal using RNN DNN and CNN," Proc.
    Condition Monit. Diagnosis (CMD), pp. 1-6, Sep. 2018.
    52
    [9] L. Wen, X. Li, L. Gao and Y. Zhang, "A new convolutional neural
    network based data-driven fault diagnosis method," IEEE Trans.
    Ind. Electron., vol. 65, no. 7, pp. 5990-5998, Jul. 2018.
    [10] J. Wang, Z. Mo, H. Zhang and Q. Miao, "A deep learning method for
    bearing fault diagnosis based on time-frequency image," IEEE
    Access, vol. 7, pp. 42373-42383, 2019.
    [11] A. Nandi, S. Biswas, K. Samanta, S. S. Roy and S. Chatterjee,
    "Diagnosis of Induction Motor Faults Using Frequency Occurrence
    Image Plots—A Deep Learning Approach," 2019 International
    Conference on Electrical, Electronics and Computer Engineering
    (UPCON), February 2020.
    [12] J. Zhu, N. Chen and C. Shen, "A new deep transfer learning method
    for bearing fault diagnosis under different working conditions,"
    IEEE Sensors J., Aug. 2019.
    [13] Q. Liu and C. Huang, "A fault diagnosis method based on transfer
    convolutional neural networks," IEEE Access, vol. 7, pp. 171423-
    171430, 2019.
    [14] Q. Wang, G. Michau and O. Fink, "Domain adaptive transfer
    learning for fault diagnosis," Proc. Prognostics Syst. Health
    Manage. Conf. (PHM-Paris), pp. 279-285, 2019.
    [15] K. Saito, K. Watanabe, Y. Ushiku and T. Harada, "Maximum
    classifier discrepancy for unsupervised Domain Adaptation, "
    Proceedings of the IEEE Conference on Computer Vision and
    Pattern Recognition (CVPR), 2018.
    [16] W. Xu, Y. Wan, T.Y. Zuo and X.M. Sha, "Transfer Learning Based
    Data Feature Transfer for Fault Diagnosis," IEEE Access, pp. 76120-
    76129, 2020.
    [17] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko and T. Darrell, "Deep
    domain confusion: Maximizing for domain invariance,"
    arXiv:1412.3474,2014.
    53
    [18] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F.
    Laviolette, M. Marchand and V. Lempitsky, "Domain-adversarial
    training of neural networks,"Journal of Machine Learning Research,
    2016.
    [19] A. H. li and S. Li-ping, "Fault diagnosis of induction motor based on
    information entropy fusion,"2010 2nd International Conference on
    Advanced Computer Control, March 2010.
    [20] 機器學習 VS 深度學習,誰在分類問題上獲勝?Retrieved from
    https://kknews.cc/tech/g9j6rv9.html.
    [21] Hung-yi Lee. "ML Lecture 19: Transfer Learning", Youtube, upload
    by Hung-yi Lee, 9 December 2016,
    https://www.youtube.com/watch?v=qD6iD4TFsdQ&t=2778s&ab_c
    hannel=Hung-yiLee.
    [22] G. K. Singh and S. A. S. Al Kazzaz, "Induction machine drive
    condition monitoring and diagnostic research—A survey," Elect.
    Power Syst. Res., vol. 64, no. 2, pp. 145-158, Feb. 2003.
    [23] W.S. Gongora, H.V.D. Silva, A. Goedtel, W.F. Godoy and S.A.O. da
    Silva, "Neural approach for bearing fault detection in three phase
    induction motors," IEEE International Symposium on Diagnostics
    for Electric Machines Power Electronics and Drives (SDEMPED),
    pp. 566-572, 2013.
    [24] 曾思憲,「感應馬達主動型狀態估測系統之研發」,碩士論文,
    國立台灣科技大學,2018 年。
    [25] 林芝以,「運用電氣訊號於感應馬達狀態監測與故障診斷之研
    究」,碩士論文,台灣科技大學電機工程學系,2016 年。
    [26] National Instrument. Retrieved from https://www.ni.com/zh-tw.html.
    [27] 人工智慧、機器學習、深度學習介紹 Retrieved from
    http://tensorflowkeras.blogspot.com/2017/06/blog-post_15.html.
    54
    [28] Day01 Transfer Learning 遷移式學習(2020) Retrieved from
    https://www.coderbridge.com/series/d4b5a1a1565e4e7a9cd14618ffe
    6146f/posts/54584ea6d4c240aeb3b8ae4af3a0531a.
    [29] Wikipedia Contributors. "Convolutional Neural Network" Retrieved
    from https://en.wikipedia.org/wiki/Convolutional_neural_network.
    [30] CH.Tseng. 初探卷積神經網路(2017) Retrieved from
    https://chtseng.wordpress.com/2017/09/12/%E5%88%9D%E6%8E
    %A2%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E
    7%B6%B2%E8%B7%AF/.
    [31] Jimmy Lin 卷積神經網路的運作原理(2016) Retrieved from
    https://brohrer.mcknote.com/zhHant/how_machine_learning_works/how_convolutional_neural_net
    works_work.html.
    [32] Wikipedia Contributors. "Recurrent neural network" Retrieved from
    https://en.wikipedia.org/wiki/Recurrent_neural_network.
    [33] RNN 介紹 Retrieved from
    https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%
    E8%A8%80/617324/.
    [34] 神奇的深度遷移學習 DDC:Deep Domain Confusion:
    Maximizing for Domain Invariance Retrieved from
    https://blog.csdn.net/qq_24305433/article/details/80239412.
    [35] 基於對抗的遷移學習方法: DANN 域對抗網路 Retrieved from
    https://zhuanlan.zhihu.com/p/73947456.
    [36] L. van der Maaten and G.E. Hinton, "Visualizing High-Dimensional
    Data Using t-SNE," J. Machine Learning Research, vol. 9, pp. 2579-
    2605, 2008.
    [37] 徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,碩士論
    文,國立台灣科技大學,2014 年。
    55
    [38] 馮建中,「基於卷積神經網路之感應馬達新故障診斷法」,碩士
    論文,國立台灣科技大學,2020 年。
    [39] 蕭宗閔,「應用數據增強於卷積神經網路之馬達故障診斷之研
    究」,碩士論文,國立台灣科技大學,2020 年。

    無法下載圖示 全文公開日期 2026/01/25 (校內網路)
    全文公開日期 2026/01/25 (校外網路)
    全文公開日期 2026/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE